USER'S MANUAL

HIGH SPEED APERTURE A/D M-MODULE

MODEL M228

COPYRIGHT

C&H Technologies, Inc. (C&H) provides this manual "as is" without warranty of any kind, either expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. C&H may make improvements and/or changes in the product(s) and/or program(s) described in this manual at any time and without notice.

This publication could contain technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of this publication.

Copyright © 2009 by C&H Technologies, Inc.

The information and/or drawings set forth in this document and all rights in and to inventions disclosed herein which might be granted thereon disclosing or employing the materials, methods, techniques, or apparatus described herein, are the exclusive property of C&H Technologies, Inc.

A Reader's Comment Form is provided at the back of this publication. If this form has been removed address comments to:

C&H Technologies, Inc. Technical Publications 445 Round Rock West Drive Austin, Texas 78681-5012

Or visit our web site for support information at:

http://www.chtech.com.

C&H may use or distribute any of the information you supply in any way that it believes appropriate without incurring any obligations.

AMENDMENT NOTICE

C&H Technologies, Inc. makes every attempt to provide up-to-date manuals with the associated equipment. Occasionally, changes are made to the equipment wherein it is necessary to provide amendments to the manual. If any amendments are provided for this manual they are printed on colored paper and will be provided with the module and manual. Manual updates may also be found on out web site at www.chtech.com.

NOTE

The contents of any amendment may affect operation, maintenance, or calibration of the equipment.

INTRODUCTION

This manual describes the operation and use of the C&H Model M228 High Speed Aperture A/D (Part Number 11030500). This mezzanine module is designed to interface within any M/MA-Module carrier adhering to the ANSI/VITA 12-1996 M-Module specification. These carriers are available in many formats such as VME, VXI, LXI, PXI, cPCI, and the PC.

Contained within this manual are the physical and electrical specifications, installation and startup procedures, functional description, and configuration and programming guidelines to adequately use the product.

This manual is based on a low level register access, and is written in such a manner to provide understanding to the user based on this type of access. If a driver is provided, please refer to the driver documentation for instruction using the higher level interface provided by the driver.

TABLE OF CONTENTS

1.0 GENERAL DES	CRIPTION	1
1.1 PURPOSE	E OF EQUIPMENT	1
1.2 SPECIFIC	CATIONS OF EQUIPMENT	1
1.2.1	Key Features	
1.2.2	Specifications	2
1.2.3	Mechanical	6
1.2.4	Bus Compliance	6
1.2.5	Applicable Documents	6
1.2.6	Credits	6
2.0 INSTALLATION	N	7
2.1 UNPACK	ING AND INSPECTION	7
2.2 HANDLIN	NG PRECAUTIONS	7
2.3 INSTALL	ATION OF M MODULES	7
2.4 PREPARA	ATION FOR RESHIPMENT	8
3.0 FUNCTIONAL I	DESCRIPTION	9
3.1 OVERVIE	EW	9
3.1.1	Programmable Divider	9
3.1.2	Self test and Calibration Logic	9
3.1.3	References	
3.1.4	Instrumentation Amplifier (IA)	9
3.1.5	Anti-Aliasing Filter	. 10
3.1.6	Programmable Gain Amplifier (PGA)	
3.1.7	Analog Digital Converter (ADC)	. 10
3.1.8	Aperture Comparator	
3.1.9	FIFO	. 10
3.1.10	32-Bit Timestamp	. 11
3.1.11	Clock/Run Control	. 11
3.1.12	On-board Oscillator	. 11
3.1.13	External Inputs and Control	. 11
3.1.14	External Outputs and Control	. 11
3.1.15	M-Triggers & Control	. 11
3.1.16	Calibration	. 12
3.2 INPUT/O	UTPUT SIGNALS	. 12
3.3 CONFIGU	JRATION AND IDENTIFICATION	. 13
3.3.1	Programming Registers	. 13
3.3.2	M-Module Identification PROM	. 28
4.0 OPERATION		. 29
4.1 A/D CON	VERSION	. 29
4.2 VALUE-T	TME PAIR STORAGE	. 29
4.3 APERTU	RE WINDOWS	. 30
4.3.1	Aperture Mode 0	. 30
4.3.2	Aperture Mode 1	. 30
4.3.3	Aperture Mode 2	. 31
4.3.4	Aperture Mode 3	. 31

4.3.5 Aperture Mode 4	
4.3.6 Aperture Mode 5	
4.3.7 Aperture Mode 6	
4.4 FILTER SELECTION	
4.5 CALIBRATION	
4.6 ID PROM	
LIST OF APPENDICES	

APPENDIX A: CONNECTORS	1 1
AT I ENDIA A. CONNECTORS	J-1

LIST OF FIGURES

Figure 1. Frequency Response - Elliptic Filter	4
Figure 2. Frequency Response - Bessel Filter	4
Figure 3. Frequency Response - Bypass	
Figure 4. Transient Response - Elliptic Filter	5
Figure 5. Transient Response - Bessel Filter	5
Figure 6. Transient Response - Bypass	5
Figure 7. M-Module Installation	
Figure 8. Functional Block Diagram	9
Figure 9. Programming Registers	14
Figure 10. ID PROM Access Routine	34
-	
Figure A-1. M/MA Interface Connector Configuration	A-1
Figure A-2. Front Panel Coax D-SUB Connector Configuration	A-2

LIST OF TABLES

Table I. Register Address Map	13
Table II. M-Module EEPROM IDENT Words	
Table III. EEPROM Calibration Data Format	
Table IV. Single Calibration Entry Format	

1.0 GENERAL DESCRIPTION

The M228 is a 1MSPS 14-bit A/D converter module that samples and selectively stores differential analog signals along with a 32-bit time stamp at a rate up to 1MSPS. The module has the ability to convert and store all data at the specified sample rate or selectively store input values that exceed the range of the programmed aperture window. This technique provides extensive real-time data compression and data extraction for transient type input signals

The module conforms to the ANSI/VITA 12-1996 standard for M-modules, which allows it to be used in a variety of platforms, including VXI, LXI, PXI, VME, PCI, cPCI, and Ethernet, with the use of an M-module carrier.

1.1 PURPOSE OF EQUIPMENT

This instrument is designed for data acquisition applications required in industrial test and measurement systems. The instrument allows high speed (1MSPS) data acquisition and analysis of transient analog signals without massive amounts of data being stored.

1.2 SPECIFICATIONS OF EQUIPMENT

- 1.2.1 Key Features
 - 14-Bit Resolution
 - Up to 1MSPS
 - Bipolar Differential Input
 - 32-Bit Timestamp
 - 32Meg Deep Sample FIFO in Value-Time Pair storage mode
 - 64Meg Deep Sample FIFO in Value Only storage mode
 - Flexible Real-time Data Storage Modes with external real-time change capability
 - Capture Till Full and Continuous Capture Mode
 - Continue Time-Stamping while Capture Disabled
 - External "Data Stored" signal
 - Two Programmable Anti-aliasing Filters (one Bessel response and the other a linear phase elliptic response) plus a bypass mode
 - Programmable Gain (front-end 1, 2, 5, or 10 and back-end 1, 2. 5, 10, 20, 50, or 100)
 - Programmable 10:1 Voltage Divider
 - ±60V Input Range
 - 10MΩ Input Impedance

1.2.2 Specifications

MAXIMUM RATINGS

Parameter	Condition	Rating	Units
Operating Temperature		0 to +50	°C
Non-Operating Temperature		-40 to +71	°C
Humidity	non-condensing	5 to 95	%
Power Consumption	+5V	485 (typ), 500 (max)	mA
	+12V	40 (typ), 100 (max)	mA
	-12V	80 (typ), 150 (max)	mA
Auxiliary Power Supply Current	+5V	500	mA
	+12V	100	mA
	-12V	100	mA
Voltage on Analog Inputs (AIN0+/-)	input connector limitation	± 60	V
Voltage on External Inputs (FPINA/B)	no damage, power off	± 40	V
	no damage, power on	± 36	V

SPECIFICATIONS (full operating temperature, unless otherwise specified)

Parameter	Conditions		Units		
		Min	Тур	Max	
A/D Converter	-		•	•	
Resolution	no missing codes			14	bits
Integral Linearity Error		-1	±0.3	+1	LSB
Differential Linearity Error		-1		+1	LSB
Zero Error	before calibration	-15		+15	LSB
Full Scale Error	before calibration	-20		+20	LSB
Zero Error Drift				0.1	mV/°C
Full Scale Error Drift				0.1	mV/°C
Throughput	Warp Mode ¹	0.001		1	MSPS
	Normal Mode	0		800	KSPS
Signal to Noise Ratio			85.5		dB
Signal Input Conditioning					
Input Range	normal (G = 1)	-10		+10	V
	\div 10 active (G = 1)	-60		+60	V
Common Mode Voltage Range		±13			V
Common Mode Rejection Ratio	dc to 50KHz	80			dB
Input Impedance	differential	20			MΩ
	common-mode	10			MΩ
	÷10 active	10			MΩ
Divider	programmable (1 or ÷10)	1		0.1	V/V
Gain	overall	1		1000	V/V
	front end (1, 2, 5, or 10)	1		10	V/V
	back end (1, 2. 5, 10, 20, 50, or 100)	1		100	V/V
Filter Cutoff Frequencies	Elliptic, programmable in binary steps	1.6		416	KHz
	Bessel, programmable in binary steps	0.3		88	KHz
Filter Response	See Frequency & Transient Response Curves (Figure 1 - Figure 6)				
Group Delay	Elliptic, $f_c = 104 KHz$	11.7	12	14.2	μs
	Bessel, f _C = 88KHz	6	7	8	μs

SPECIFICATIONS (continued)

Parameter	Conditions		Limits			
		Min	Тур	Max		
Internal Sample Clock				•		
Accuracy				±0.01	%	
Frequency	incremental (see note 3)	10Hz		1	MHz	
Jitter				±500	ps	
Calibration References						
Accuracy	±0.5V	-0.35		0.35	%	
	±10V	-0.1		0.1	%	
Temperature Coefficient	±0.5V			25	ppm/°C	
	±10V			50	ppm/°C	
External Inputs (FPINA & FPIN	B)			•		
Input Threshold	programmable	0		+5.0	V	
Input Impedance	programmable for 50Ω or	45	50	55	Ω	
	Hi-Z	19K			Ω	
Pulse Width		5			ns	
Frequency	see note 4			50	MHz	
External Outputs (FPOUTA & F	POUTB)	1			•	
Driver Type	Two 74ABT125 outputs in parallel	with a 25Ω series	s resistor			
Output High Voltage	V _{OH} at -6ma	2.5			V	
	V _{OH} at -64ma	2.0			V	
Output Low Voltage	V _{OL} at 128ma			0.55	V	

Specification Notes: 1. In Warp Mode, the time between conversions must not exceed 1ms.

2. 3. Relative to gain at $0.1f_{c}$. The internal clock rate is 1MHz. Sixteen programmable prescalers allow the internal sample rates to vary from 10Hz to 1MHz.

This is the maximum frequency that the input logic can accept. The maximum functional frequency is limited by the use of the input signal. 4.

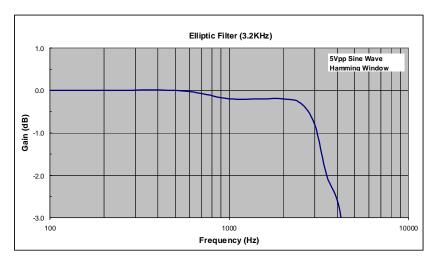


Figure 1. Frequency Response - Elliptic Filter

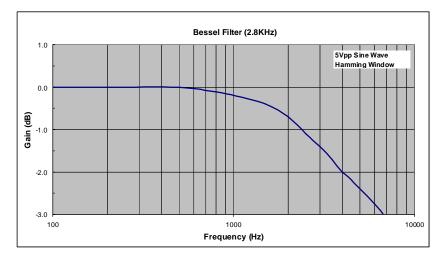


Figure 2. Frequency Response - Bessel Filter

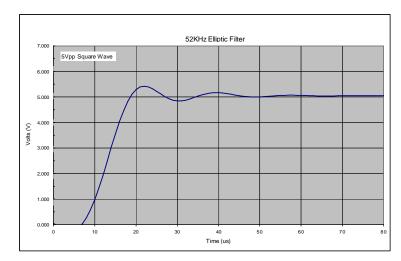



Figure 3. Frequency Response - Bypass

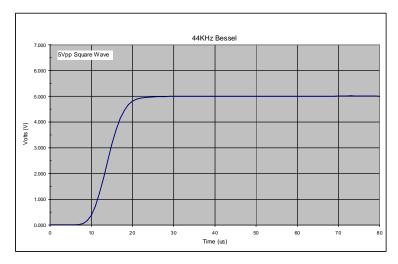


Figure 5. Transient Response - Bessel Filter

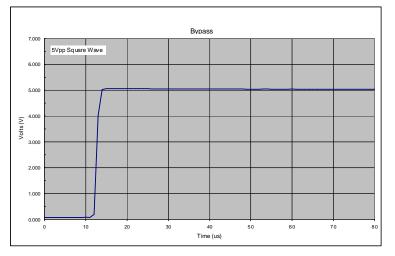


Figure 6. Transient Response - Bypass

1.2.3 Mechanical

The mechanical dimensions of the module are in conformance with ANSI/VITA 12-1996 for single-wide M-Module modules. The nominal dimensions are 5.687" (144.5 mm) long \times 2.082" (106.2 mm) wide.

1.2.4 Bus Compliance

The module complies with the ANSI/VITA 12-1996 Specification for single-wide M-Modules. The module also supports the optional IDENT and VXI-IDENT functions.

Module Type:	M-Module
Addressing:	A08
Data:	D16, D32
Interrupts:	INTC (ROAK with vector)
Burst:	not supported
DMA:	not supported
Triggers:	MTRGA & MTRGB
Identification:	IDENT and VXI-IDENT
Manufacturer ID:	0FC1 ₁₆
Model Number:	$00E4_{16}$ (228 dec.)
VXI Model Code:	0FD4 ₁₆ (M228)

1.2.5 Applicable Documents

ANSI/VITA 12-1996 Standard for The Mezzanine Concept M-Module Specification, Approved May 20, 1997, American National Standards Institute and VMEbus International Trade Association, 7825 E. Gelding Dr. Suite 104, Scottsdale, AZ 85260-3415, <u>www.vita.com</u>

1.2.6 Credits

The following open source code was used in the design of this module:

- 1. I2CWB Wrapper (C) Victor Lopez Lorenzo under LGPL license
- 2. WISHBONE rev.B2 compliant synthesizable I2C Slave model (C) 2001 Richard Herveille <u>richard@asics.ws</u> under LGPL license

2.0 INSTALLATION

2.1 UNPACKING AND INSPECTION

Verify that there has been no damage to the shipping container. If damage exists then the container should be retained, as it will provide evidence of carrier caused problems. Such problems should be reported to the shipping courier immediately, as well as to C&H. If there is no damage to the shipping container, carefully remove the module from its box and anti static bag and inspect for any signs of physical damage. If damage exists, report immediately to C&H.

2.2 HANDLING PRECAUTIONS

The M228 contains components that are sensitive to electrostatic discharge. When handling the module for any reason, do so at a static-controlled workstation, whenever possible. At a minimum, avoid work areas that are potential static sources, such as carpeted areas. Avoid unnecessary contact with the components on the module.

2.3 INSTALLATION OF M MODULES

All M-Modules must be installed into the carrier before the carrier is installed into the host system. To install a module, firmly press the connector on the M-Module together with the connector on the carrier as shown in Figure 7. Secure the module through the holes in the bottom shield using the original screws.

CAUTION: M-Module connectors are NOT keyed. Use extra caution to avoid misalignment. Applying power to a misaligned module can damage the M-Module and carrier.

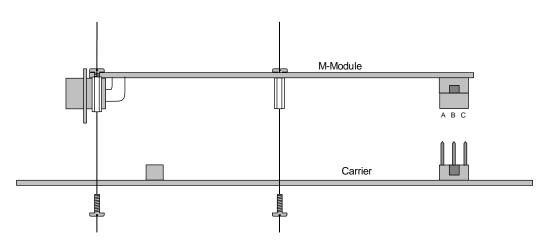
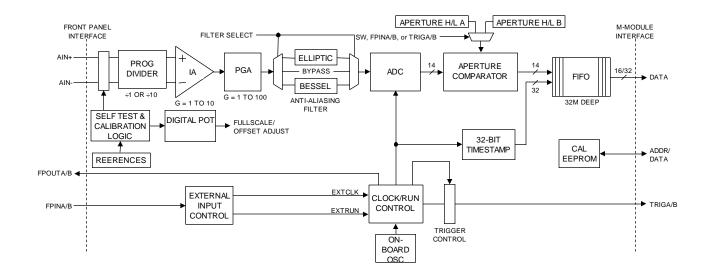


Figure 7. M-Module Installation


2.4 PREPARATION FOR RESHIPMENT

If the module is to be shipped separately it should be enclosed in a suitable water and vapor proof anti-static bag. Heat seal or tape the bag to insure a moisture-proof closure. When sealing the bag, keep trapped air volume to a minimum. The shipping container should be a rigid box of sufficient size and strength to protect the equipment from damage. If the module was received separately from a C&H system, then the original module shipping container and packing material may be re-used if it is still in good condition.

3.0 FUNCTIONAL DESCRIPTION

3.1 OVERVIEW

A simplified functional block diagram of the module is shown in Figure 8.

Figure 8. Functional Block Diagram

3.1.1 Programmable Divider

The programmable divider allows the input voltage to be divided by ten in order to handle input voltage levels up to 60V.

3.1.2 Self test and Calibration Logic

The self test and calibration logic can insert a reference signal at the inputs of the instrumentation amplifier. This reference signal can be used to self test or calibrate the unit.

3.1.3 References

Several references are provided to allow internal reference calibration and self-test.

3.1.4 Instrumentation Amplifier (IA)

The instrumentation amplifier provides differential input signal buffering and conditioning. This amplifier also provides a programmable (front end) gain of 1, 2, 5 or 10.

3.1.5 Anti-Aliasing Filter

Two types of anti-aliasing filters and bypass mode are provided. The elliptic filter is a 10th order low pass filter with a linear phase and a root raised cosine amplitude response. It has very steep roll-off and its cutoff frequency is programmable from 1.6 KHz to 104 KHz. The Bessel filter is an 8th order low pass filter with a linear phase response over its entire passband. It exhibits little to no over-shoot, under-shoot, or ringing with pulse type signals and its cutoff frequency can be programmed from 300Hz to 88 KHz. If desired, the filters can be bypass. In the case, only a fixed 2nd order active RC low pass filter with a cutoff frequency of around 400 KHz is provided.

3.1.6 Programmable Gain Amplifier (PGA)

The programmable gain amplifier (PGA) provides a programmable (back-end) gain of 1, 2, 5, 10, 20, 50, and 100.

3.1.7 Analog Digital Converter (ADC)

The ADC converts the analog input signal to a digital value. The ADC is a 14-bit that uses successive approximation register (SAR) architecture with no pipeline delay to perform the analog-to-digital conversion.

3.1.8 Aperture Comparator

The aperture comparator logic provides real-time data compression of the input signal. The aperture comparator logic compares the new data value with the last stored value to provide a real-time decision to store or not store the data. Various aperture modes allow easy storage of only the desired data reducing storage and data transfer requirements. Two programmable apertures (A & B) each with a high and low value allow flexible setting of the desired data. Depending on the aperture mode, the logic can use an external signal switch between the two apertures or automatically switch.

3.1.9 FIFO

The synchronous read/write first-in first-out (FIFO^{*}) memory provides data storage for up to 32 million value-time pairs or 64 million A/D values. In value-time pair storage mode, the value-time pairs are stored as 48-bit wide data and retrieved by the user as a three 16-bit word set or as a two 32-bit word set. In value storage only mode, the A/D value is stored in the upper 32-bits of memory and retrieved by the user as a single 16-bit words or as a 32-bit word sets.

* Note: Although the memory is technically a FIFO, a random access capability is provided to allow the read pointer to be positioned at any point in memory. This capability is very useful in continuous capture mode where the data of interest may be near the end of the FIFO.

3.1.10 32-Bit Timestamp

The 32-bit timer provides a time stamp of the data stored. The time increments by one on each rising edge of the sample clock. The timer can be reset independent of the A/D conversion enable or at the same time and can be programmed to continue running while A/D conversion is disabled. Over one hour of uniquely time-stamped data can be captured when running a sample rate of 1M samples per second. A timestamp rollover interrupt allows unique time stamping for an indefinite amount of time.

3.1.11 Clock/Run Control

This logic provides selection and control of the sample clock and timestamp run enable signals. These signals can be generated internally or provided by an external source through the front panel or backplane triggers. The logic includes a prescaler that can divide the input clock frequency by a value from 1 to 100,000 to produce the desired sample rate. In addition, the sample clock and timestamp run enable signals can be output to the front panel connector or to the backplane triggers to serve as the master control for multiple M228's in a system.

3.1.12 On-board Oscillator

An on-board oscillator provides a base 1MHz to the clock control logic. This oscillator can be used to perform the A/D conversion and time stamping.

3.1.13 External Inputs and Control

Two front panel inputs are provided for external control of the sample clock rate, A/D conversion enable, and other signals. Each input has a programmable threshold level, input impedance, and logic inversion capability. In addition, the signals can be internally latched to provide a typical armed, ready, triggered function.

3.1.14 External Outputs and Control

Two front panel outputs are provided for external synchronization of other system components. A variety of internal signals can be routed to the front panel outputs.

3.1.15 M-Triggers & Control

Two bidirectional backplane triggers (TRIGA/B) allow control the sample clock rate, A/D conversion enable, and other signals through a carrier or system backplane. In addition, a variety of internal signals can be routed and output to the backplane trigger system.

3.1.16 Calibration

Calibration is provided through an on-board digital potentiometer that allows adjustment of the 0V offset and full scale reading. Calibration can be performed using on-board references or at a system level using external references. Calibration values are stored in an on-board non-volatile EEPROM.

3.2 INPUT/OUTPUT SIGNALS

The front panel I/O connector is a standard 44-pin D-subminiature female receptacle (CONEC P/N 164A18119X or equivalent). Below are the signals and functional descriptions provided on the connector (see Appendix A for pin assignments).

- AIN+/- Differential Analog Input Signals
- FPINA/B Front Panel Input A & B. These contacts can be used to input an external sample clock, A/D conversion enable, or RUN enable signal (Input threshold is programmable from 0V to +5.0V, input impedance is programmable for Hi-Z or 50 Ω).
- FPOUTA/B Front Panel Output A & B. These contacts can be programmed to output the master sample clock, A/D conversion enable, or run enable signal (TTL output levels).
- AUX+5V Auxiliary +5V power for an external buffer, amplifier, or other logic. (*Do not* exceed 500mA)
- AUX+12V Auxiliary +12V power for an external buffer, amplifier, or other logic. (*Do not* exceed 100mA)
- AUX-12V Auxiliary -12V power for an external buffer, amplifier, or other logic. (Do not exceed 100mA)
- GND Ground (common ground for the FPINA/B, FPOUTA/B, AUX+5V, AUX+12V, and AUX-12V).

3.3 CONFIGURATION AND IDENTIFICATION

3.3.1 Programming Registers

There are a variety of registers used to configure and control the M228 module. These registers are located as an offset from the base address of the module. The absolute address depends on the M-module carrier for which the M228 is installed. See the carrier's User Manual for details. The address map and details of the registers are shown in Table I and Figure 9.

IO REG.		
(HEX)	32-Bit	REGISTER DESCRIPTION
00	*	ID
02		Revision
04	*	Master Control
06		Interrupt Control
08	*	Function Source Control
0A		Clock Control
0C	*	Output Source Map
OE		(reserved)
10	*	Input A Control
12		Input B Control
14	*	Aperture High A
16		Aperture Low A
18	*	Aperture High B
1A		Aperture Low B
1C-1E		(reserved)
20	*	FIFO Data Port (32-bit/16-bit)
22		(reserved)
24	*	FIFO Unread Count (High)
26		FIFO Unread Count (Low)
28	*	Last Value Stored
2A		Current Value
2C	*	Time Stamp (High)
2E		Time Stamp (Low)
30	*	Peripheral Variable Voltage
32		(reserved)
34	*	Random Data Port (32-bit/16-bit)
36		(reserved)
38	*	Random Data Address (High)
3A		Random Data Address (Low)
3A-3E		(reserved)
40	*	Analog Input Control
42		Anti-Aliasing Filter Control
44	*	A/D Temperature
46		Calibration Fullscale/Offset
48	*	Calibration EEPROM Control
4A		Calibration EEPROM Data
4C-FC		(reserved)
FE		IDPROM

Table I.	Register	Address Map
I abit Ii	Register	nuul coo mup

Note: The * indicates allowable 32-bit access boundaries.

Reg 00	ID Register															
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	(read only) (read only)															
Read				CON	IFIG							MO	DEL			
 CONFIG ⇒ Configuration Number (dash number of the unit according to the following table) 0 Normal Others Undefined MODEL ⇒ Model Number (always reads hex E4, decimal 228) 																
Reg 02							Revi	ision	Regi	ister						
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

LGMAJ \Rightarrow Logic Major Revision (first major release is 1, prerelease is 0)

(read only)

RESERVED

LGMIN \Rightarrow Logic Minor Revision (minor releases involve insignificant changes or corrections)

(read only)

LGMIN

LGMAJ

RESERVED ⇒ Reserved (this value should be ignored, it is reserved for special information)

Figure 9. Programming Registers

Write

Read

Reg 04

Master Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Write	-	-	-	-	CTSR	CCM	RFF	RTS	ST	Μ	-	-	FST	ASEL	ACE	TRUN	
Read	FF	HF	OF	NE	TSR	CCM	0	0	ST	Μ	0	0	FST	ASEL	ACE	TRUN	

FF ⇒	FIFO Full ($(1 = \text{full})^{-1}$
------	-------------	--------------------------

- HF \Rightarrow FIFO Half Full (1 = FIFO is at least half full)
- QF \Rightarrow FIFO Quarter Full (1 = FIFO is at least one quarter full)
- NE \Rightarrow FIFO Not Empty (1 = FIFO has at least one time-value pair stored)
- TSR \Rightarrow Time Stamp Rollover (1 = Time Stamp Rollover occurred)
- CTSR \Rightarrow Clear Time Stamp Rollover (1 = Clear Time Stamp Rollover status)
- CCM \Rightarrow Continuous Capture Mode² (0 = stop capturing data when FIFO is full (CTF Mode), 1 = continuously capture data even when FIFO is full (CCM))
- RFF \Rightarrow Reset FIFO (1 = reset)
- RTS \Rightarrow Reset Time Stamp Counter (1 = reset)
- STM ⇒ Storage Mode
 - 00 normal value-time pair storage
 - 01 value storage only
 - 10 (reserved)
 - 11 no storage
- FST \Rightarrow Force Store (0 = normal operation, 1 = force the storage of any value ignoring aperture values)³
- ASEL \Rightarrow Aperture Select (0 = use "A" aperture values, 1 = use "B" aperture values)³
- ACE \Rightarrow A/D Conversion Enable (0 = disable, 1 = enable)^{3,4}
- TRUN \Rightarrow Timestamp Run (0 = timestamp clock disabled, 1 = timestamp clock enabled)³

Notes:

- 1. In CTF mode, FIFO Full is an error condition and capturing of data stops. In CCM, FIFO Full is only an indicator.
- 2. See 4.2 for details on operation in these modes.
- 3. The FST, ASEL, ACE and TRUN bits only set the software value for the control. The source of the function must be defined as "Software Register" in the Function Source Control and Clock Control Registers to use these bits.
- 4. When STM = 00, value-time storage can only occur when ACE is enabled. If ACE is disabled and TRUN is enabled, the timestamp counter will run, but no data will be stored.

Figure 9. Programming Registers (continued)

Reg 06

Interrupt Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	FFIP	HFIP	QFIP	NEIP	TSRP	-	-	-	FFIE	HFIE	QFIE	NEIE	TSRE	-	-	GIE
Read	FFIP	HFIP	QFIP	NEIP	TSRP	0	0	0	FFIE	HFIE	QFIE	NEIE	TSRE	0	0	GIE

FFIP \Rightarrow FIFO Full Interrupt Pending $(1 = \text{pending})^1$

HFIP \Rightarrow FIFO Half Full Interrupt Pending (1 = pending)¹

QFIP \Rightarrow FIFO One-Quarter Full Interrupt Pending (1 = pending)¹

NEIP \Rightarrow FIFO Not Empty Interrupt Pending (1= pending)¹

TSRP \Rightarrow Time Stamp Rollover Interrupt Pending (1 = pending)¹

FFIE \Rightarrow FIFO Full Interrupt Enable (1 = enable)

HFIE \Rightarrow FIFO Half Full Interrupt Enable (1 = enable)

QFIE \Rightarrow FIFO One-Quarter Full Interrupt Enable (1 = enable)

NEIE \Rightarrow FIFO Not Empty Interrupt Enable (1 = enable)

TSRE \Rightarrow Time Stamp Rollover Interrupt Enable (1 = enable)

GIE \Rightarrow Global Interrupt Enable (1 = enable)²

Notes:

1. To clear a pending interrupt, writing a '1' to the interrupt pending bit.

- 2. GIE bit is automatically cleared when an interrupt acknowledge is received. Software must reenable GIE after servicing the interrupt to receive further interrupts.
- 3. During an interrupt acknowledge (IACK) cycle, the upper byte of this register is presented as the interrupt vector.

Function Source Control Register

											•	5					
Bit	15	14	13	12	11	10	9	8	7	6	5	5 4	3	2	1	0	
Write	FSL	F	FSTSRC		ASL	A	SELSR	С	ACL		ACE	SRC	TRL	TF	RUNSR	С	
Read	FSL	F	FSTSRC		ASL	A	SELSR	С	ACL		ACE	SRC	TRL	Tŀ	RUNSR	С	
-																	
]	FSL ⊏	> Force	e Sto	re All A	Active	Level ((0 = a)	ctive hi	gh, 1	= ac	tive low)					
	FSTS	RC =	> Forc	e Sto	re All S	Source	e										
			000) Se	oftware	e Regi	ster (FA	ACQ	bit)	1	00	Backpla	ne Trig	gger A			
			001	l (r	eserve	1)				1	01	Backpla	ne Trig	gger B			
			010) F	PINA s	signal				1	10	(reserve	d)				
			011	l F	PINB s	signal				1	111 (reserved)						
	I	ASL ⊏	Aper	ture S	Select A	Active	Level (0 = ac	ctive hi	gh, 1	= ac	tive low)					
A	ASELS	RC =	> Aper	ture S	Select S	Source	e										
			000) Se								Backplane Trigger A					
			001	l (r	eserve	1)				1	01	Backpla	ne Trig	gger B			
			010) F	PINA s	signal				1	10	(reserve	d)				
			011		PINB s						11	(reserve					
	A	ACL □	⇒ A/D	A/D Conversion Enable Active Level $(0 = a)$							e hig	h, $1 = act$	ive lov	v)			
	ACES	RC =	⇒ A/D	Conv	resion	Enabl	e Sourc	ce									
			000) Se	oftware	e Regi	ster (A	CE bi	t)		00						
			001	l (r	eserve	d)				1	01	Backpla	ne Trig	gger B			
			010		PINA s					1	10	(reserve	/				
			011		PINB s						11	(reserve					
				Timestamp Run Enable Active Level $(0 = a)$							higl	1, 1 = action	ive low	')			
Т	RUNS	RC □	> Time	estamp Run Enable Source													
			000		oftware	e Regi	ster (R	UN bi	t)		00	Backpla					
			001		eserve	·				1	01	Backpla		gger B			
			010		8						10	(reserve	·				
011 FPINB							ignal				11	1 (reserved)					

Clock/Aperture Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	SCLK	-	-	-	-	Α	PMOE	ЭE		PS	SC		-	(CLKSRO	
Read	0	0	0	0	0	А	PMOE	ЭE		PS	SC		0	(5	

SCLK \Rightarrow Software Clock (1 = toggles sample clock high then low)^{1, 2}

APMODE ⇒ Aperture Mode

- 0 Store if outside selected aperture window
- Store once outside selected "absolute" window and outside of aperture window "B"3 1
- 2 Store if outside absolute window "A" and outside of aperture window "B"
- Store once inside selected absolute window and outside of aperture window "B"3 3
- 4 Store if inside absolute window "A" and outside of aperture window "B"
- 5 Store if outside both absolute window "A" and "B"
- Store if inside either absolute window "A" or "B" 6
- (reserved) 7

PSC ⇒ Prescaler Control (Selected clock is divided by this prescaler)

	Value	Prescaler	Value	Prescaler	Value	Prescaler	Value	Prescaler
	0000	1	0100	20	1000	500	1100	10000
	0001	2	0101	50	1001	1000	1101	20000
	0010	5	0110	100	1010	2000	1110	50000
	0011	10	0111	200	1011	5000	1111	100000
CLKSRC ⇒	Clock So	ource						
	000	Internal Osci	llator		100	Backplane	Trigger A	
	001	Software Re	gister (SC	LK bit)	101	Backplane	Trigger B	
	010	FPINA signa	ıl		110	(reserved)		
	011	FPINB signa	ıl		111	(reserved)		

Notes:

- 1. The Clock Source (CLKSRC) field must first be specified as "Software Register" before writing a '1' to the SCLK bit.
- Writing a '1' to SCLK field, produces an internal high then low pulse. 2.
- Once the signal crosses outside (or inside) the absolute window "A" the aperture window "B" is used. 3. A Reset FIFO (RFF) is required to use aperture "A" again.

Reg 0C

Output Source Map Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	ITOB		TBSRC		ITOA		TASRC		IFOB		FBSRC		IOFA		FASRC	
Read	ITOB		TBSRC		ITOA		TASRC		IFOB		FBSRC		IOFA		FASRC	

ITOA/ITOB ⇒ Invert Trigger Output

TASRC/TBSRC

TASKC/TBSKC -	→ I rigge	er Output Source
	0	Disabled (input)
	1	Sample Clock (after prescaler)
	2	Clock (before prescaler)
	3	Force Store Signal
IFOA/IFOB □	⇒ Invert	Front Panel Output
FASRC/FBSRC =	⇒ Front	Panel Output Source
	0	Disabled (High-Z)
	1	Sample Clock (after prescaler)

- Clock (before prescaler) 2
- 3 Force Store Signal

- 4 Aperture Select Signal
- A/D Conversion Enable Signal 5
- Timestamp Run Enable Signal 6
- 7 Value Stored Strobe

Aperture Select Signal 4

- 5 A/D Conversion Enable Signal
- Timestamp Run Enable Signal 6
- Value Stored Strobe 7

Figure 9. Programming Registers (continued)

Input A Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	CLTA	CLFA	-	IIFA	IVTA	IVFA	LTA	LFA			Input T	hreshol	d FP A	(ITFA)		
Read	TAS	FAS	0	IIFA	IVTA	IVFA	LTA	LFA			Input T	hreshol	d FP A	(ITFA)		

CLTA ⇒	Clear Latched TRIGINA (1 = clears latched signal) 1
CLFA ⇒	Clear Latched FPINA (1 = clears latched signal) 1
TAS ⇒	TRIGINA Status ($0 = low$, $1 = high$, after inversion and latching)
FAS ⇒	FPINA Status ($0 = low$, $1 = high$, after inversion and latching)
IIFA ⇒	FPINA Input Impedance ($0 = \text{Hi-Z}, 1 = 50\Omega$)
IVTA ⇒	Invert TRIGINA Input $(0 = normal, 1 = invert)$
IVFA ⇒	Invert FPINA ($0 = normal, 1 = invert$)
LTA ⇒	Latch TRIGINA Input (0 = no latching, 1 = latch on rising edge) 2
LFA ⇒	Latch FPINA (0 = no latching, 1 = latch on rising edge) ²

ITFA \Rightarrow Input Threshold Level of FPINA ($00_{16} = 0V$ (default), FF₁₆ = +5V)

Notes:

1. The latched value is cleared by writing a '1' to the CLTA or CLFA bit.

2. Latching occurs on the rising edge of the signal after inversion, if specified.

Reg 12

Input B Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Write	CLTB	CLFB	-	IIFB	IVTB	IVFB	LTB	LFB	Input Threshold FP B (ITFB)								
Read	TBS	FBS	0	IIFB	IVTB	IVFB	LTB	LFB	Input Threshold FP B (ITFB)								

;)
2
+5V)
))

Notes:

1. The latched value is cleared by writing a '1' to the CLTB or CLFB bit.

2. Latching occurs on the rising edge of the signal after inversion, if specified.

Reg 14						Ape	rtur	e Hig	gh A	Regi	ster					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	-	-						Ape	erture H	igh A V	alue					
Read	0	0						Ape	erture H	igh A V	alue					

Aperture High A \Rightarrow This value is used to determine if the A/D value is stored to memory. The storage criterion depends on the Aperture Mode.

Note: See note below.

Reg 16						Ape	ertur	e Lo	w A]	Regi	ster					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	-	-						Apo	erture Lo	ow A V	alue					
Read	0	0						Ар	erture L	ow A V	alue					

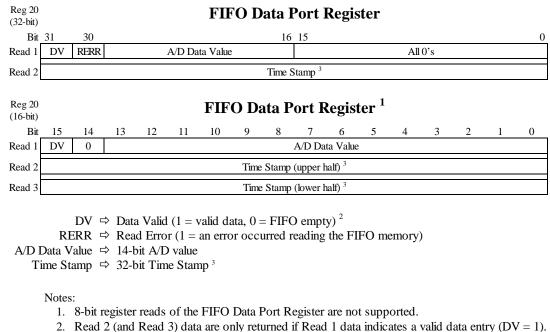
Aperture Low A ⇒ This value is used to determine if the A/D value is stored to memory. The storage criterion depends on the Aperture Mode.

Note: See note below.

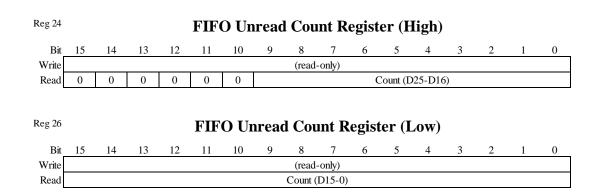
Reg 18						Ape	rtur	e Hiş	gh B	Regi	ster					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	-	-						Apo	erture H	igh B V	alue					
Read	0	0						Ap	erture H	igh B V	alue					

Aperture High B ⇒ This value is used to determine if the A/D value is stored to memory. The storage criterion depends on the Aperture Mode

Note: See note below.


Reg 1A

Aperture Low B Register


Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	-	-						Apo	erture L	ow B V	alue					
Read	0	0						Ар	erture L	ow B V	alue					

Aperture Low B \Rightarrow This value is used to determine if the A/D value is stored to memory. The storage criterion depends on the Aperture Mode.

Note: Aperture values are always specified as two's complement numbers, which represent both positive and negative values. When specifying an aperture window (versus a fixed window), the user must ensure that only positive values are specified.

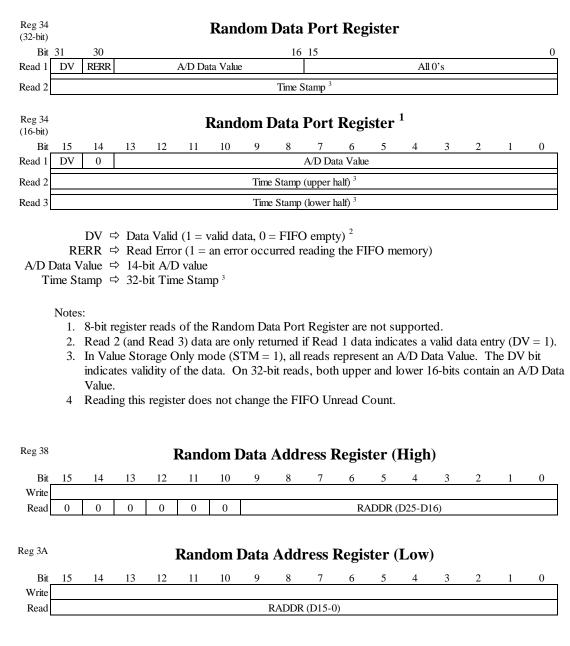
Read 2 (and Read 3) data are only returned if Read 1 data indicates a valid data entry (DV = 1).
 In Value Storage Only mode (STM = 1), all reads represent an A/D Data Value. The DV bit indicates validity of the data. On 32-bit reads, both upper and lower 16-bits contain an A/D Data Value.

Count \Rightarrow Number of time-value pairs that have not been read by the user.

Notes:

- 1. To guarantee consistency between the High and Low registers when reading as 16-bit words, the High register must be read first. Internally, the Low register is latched when the High register is read.
- 2. In Value Storage Only mode (STM = 1), the FIFO is treated as 16 bits wide; therefore, the unread count represents one data entry.

Reg 28						Last	: Val	ue St	ored	Reg	ister					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write								(read	-only)							
Read	0	0							Last S	stored						
L	ast Sto	ored 🛛	⇒ Las	t A/D	value s	tored i	n FIF(С								
Reg 2A						Cu	irren	nt Va	lue R	legist	ter					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write								(read	-only)							
Read	0	0							Curren	t Value						
	This	regist		dated	after e				on; the	refore,	A/D c	conver	sion m	ust be	enable	ed and
Reg 2C						Time	e Sta	mp R	Regist	er (H	ligh)	1				
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write								(read	-only)							
Read							Tim	e Stamp) (D31-I	D16)						
Reg 2E						Time	e Sta	mp F	Regist	ter (l	Low)					
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write								(road	onki)							


Write	(read-only)
Read	Time Stamp (D15-0)

Time Stamp \Rightarrow Snapshot of current Time Stamp value.

Note: To guarantee consistency between the High and Low registers when reading as 16-bit words, the High register must be read first. Internally, the Low register is latched when the High register is read.

Reg 30					Perij	phera	al Va	riab	le Vo	oltage	e Reg	gister	•			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	-	-	-	-						PVA	ARV					
Read	0	0	0	0						PVA	ARV					

 $PVARV \Rightarrow$ Peripheral Variable Voltage Level ($000_{16} = -10V$ (default), $800_{16} = 0V$, $FFF_{16} = +10V$)

RADDR ⇒ FIFO Memory Address to access when the Random Data Port Register is read

Notes:

- 1. To guarantee consistency between the High and Low registers when reading as 16-bit words, the High register must be read first. Internally, the Low register is latched when the High register is read.
- 2. In Value Storage Only mode (STM = 1), the FIFO is treated as 16 bits wide; therefore, the unread count represents one data entry.
- 3. This register automatically increments each time the Random Data Port Register is read.

Reg 40

Analog Input Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	REFE		REFSEL		SI	М	FT	WARP	IVDD	-	FGA	AIN	-		BGAIN	
Read	REFE		REFSEL		SI	М	FT	WARP	IVDD	0	FGA	AIN	0		BGAIN	

REFE \Rightarrow Reference Enable (0 = normal operation, 1 = enable reference signal injection)

REFSEL	⇒	Refer	ence Select		
		0	Ground (0V)		
		1	0.5V		
		2	-0.5V		
		3	10V		
		4	-10V		
		5	Variable ¹		
		6	+5V Supply		
		7	+3.3V Supply ¹		
SIM	⇒	Simul	ation Mode (non	-zer	ro = simulate a full scale triangle waveform input)2
		0	Normal Mode		
		1	Count Up from mid	poin	tt
		2	Count Down from	nidp	oint
		3	(reserved)		2
			•		operation, $1 = \text{factory test mode})^3$
					node (\leq 800KSPS), 1 = fast conversion rate mode ($>$ 800KSPS) ⁴
IVDD	⇒	Input	Voltage Divider	Disa	able (0 = enabled - $10:1(default), 1 = disabled - 1:1)$
FGAIN	⇒	Front	End Gain		
		0	G = 1		
		1	G = 2		
		_	G = 5		
		3	G = 10		
BGAIN	⇒		End Gain		
			G = 1		G = 20
		1	G = 2		G = 50
			G = 5		
		3	G = 10	7	G = 0 (disables output)

Notes:

- The variable voltage (PVARV), +5V Supply, and +3.3V Supply can be used to perform general self test functions. They should NOT be used to perform calibration. The PVARV level is controlled using the Peripheral Variable Voltage Register (Reg 26).
- 2. The simulation mode can be used to verify internal operation of the memory, control and aperture logic. In this mode, full scale triangle wave data is simulated and returned at the sample clock rate.
- 3. In Factory Test mode, the upper 16-bits of the Timestamp equal the 1's complement of the lower sixteen bits.
- 4. For sample frequencies >800KSPS, the A/D must be set to Warp Mode. See 4.1 for details about the A/D behavior in this mode.

Anti-Aliasing Filter Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	-	-	-	-		FCU	IOFF		-	-	-	-	-	-	FS	EL
Read	0	0	0	0		FCU	IOFF		0	0	0	0	0	0	FS	EL
					•											
]	FCUT	OFF 🛛	⇒ Filte	r Cut	off Freq	uency										
					Elliptic		Bessel									
				0	1.6KHz	3	00Hz									
				1	3.2KHz	6	00Hz									
				2	6.5KHz	1	.4KHz									
				3	13KHz	2	.8 KHz									
				4	26KHz	5	.5 KHz									
				5	52KHz		1 KHz									
				6	104KHz		2 KHz									
				7	Invalid		4 KHz									
				8	Invalid	8	8 KHz									
				-15	Invalid		nvalid									
	F	SEL □	⇒ Filte	r Typ	e Select											
			0		bass ¹											
			1	Ellip												
			2													
			3	inva	lid											

Note: When Bypass is selected, the elliptic and Bessel filters are bypassed; however, a fixed 2nd order active RC filter with a cutoff frequency of 400 KHz is still in place to eliminate unwanted high frequency signals.

Reg 44

A/D Temperature Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	DTR	-	-	-	-	-	-				(r	ead-onl	y)			
Read	DTR	0	0	0	0	0	NEGT				A	DTEM	Р			

DTR \Rightarrow Disable Temperature Read (1 = disable temperature reading)¹

NEGT \Rightarrow Negative Temperature (1 = the temperature is below zero)

ADTEMP ⇒ A/D Temperature Value

NEGT Temperature Formula

0 ADTEMP ÷ 4 1 (ADTEMP - 512) ÷ 4

Note: Reading of the A/D board temperature is performed every 0.5 seconds through a serial bus protocol. The DTR bit is provided to allow this automatic operation to be disabled for cases where noise reduction is crucial.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write				FS	/AL							OSV	VAL			
Read				FSV	/AL							OSV	VAL			

FSVAL \Rightarrow Full-scale Calibration Value (default = 0x80)

OSVAL \Rightarrow Offset Calibration Value (default = 0x80)

Notes:

- 1. This register controls digital potentiometers that do not retain their settings when powered off. Application driver software must initialize the calibration potentiometers before using the A/D converter.
- 2. Data is automatically read-back from the calibration potentiometers after reset/initialization and after a write to this register.
- 3. The OPC flag in the Calibration EEPROM Control Register goes low when the write operation is started and high when the data write and read-back operations are complete.

Calibration EEPROM Control Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	-	-	WPR	RPR	-	-	-				AD	DR				-
Read	OPC	IERR	0	0	0	0	0				AD	DR				0

OPC \Rightarrow Operation Complete (0 = working, 1 = done)¹

IERR \Rightarrow Internal Bus (I2C) Error (1 = an error occurred)²

WPR \Rightarrow Write EEPROM Value (1 = write)³

RPR \Rightarrow Read EEPROM Value (1 = read)⁴

WADDR ⇒ Set EEPROM Write Address (address is word aligned)

Notes:

Reg. 48

- 1. The OPC flag goes low when an operation is started and high when the operation is complete. Software must always check the OPC flag before attempting an operation. See special note for EEPROM write operations.
- 2. This bit indicates an error occurred on the last internal I2C bus operation, which is used for the EEPROM, Full Scale & Offset adjust, A/D temperature reading, and reference select operations.
- 3. When a 1 is written to the WPR bit, the EEDATA in the Calibration EEPROM Data Register is written to the EEPROM address specified in the ADDR field. Allow an additional 5ms after the OPC flag before performing another EEPROM operation.
- 4. When a 1 is written to RPR bit, the data at location ADDR is read and placed in the Calibration EEPROM Data Register. The OPC will go high when the read is complete and the EEDATA value is valid.

Calibration EEPROM Data Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	EEDATA															
Read								EED	ATA							

Notes:

Reg. 4A

- 1. A read/write is performed from/to the address in the ADDR field in the Calibration EEPROM Control Register.
- The OPC flag in the Calibration EEPROM Control Register goes low when an operation is started and high when the operation is complete. Software must always check the OPC flag before attempting an operation. Write operations can take up to 5ms to complete. Read operations complete in less than 1ms.

IDPROM Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Write	Not Used								CS	CLK	DIO					
Read							0							CS	CLK	DIO

 $\begin{array}{rcl} CS & \rightleftharpoons & IDPROM & Chip & Select \\ CLK & \Leftrightarrow & IDPROM & Clock \\ DIO & \Leftrightarrow & IDPROM & Data & Input/Output \end{array}$

3.3.2 M-Module Identification PROM

The M228 supports the identification function called IDENT. This IDENT function provides information about the module and is stored in a sixteen-word deep (32 byte) serial EEPROM. Access is accomplished with read/write operations on the last address in IOSpace (0xFE) and the data is read one bit at a time. Instructions for reading the IDENT PROM are given in section 4.6.

The module also supports the VXI-IDENT function. This function is <u>not</u> part of the approved ANSI/VITA 12-1996 standard. This extension to the M-module IDENT function increases the size of the EEPROM to at least 64 words (128 bytes) and includes VXI compatible ID and Device Type Registers. Details are shown in Table II.

Word	Description	Value (hex)
0	Sync Code	5346
1	Module Number	00E4 (228 dec.)
2	Revision Number ¹	1010
3	Module Characteristics ²	1E70
4-7	Reserved	0000
8-15	M-Module Specific	0000
16	VXI Sync Code	ACBA
17	VXI ID	0FC1 (C&H)
18	VXI Device Type ³	FFD4
19-31	Reserved	0000
32-63	M-Module Specific	0000

Table II. M-Module EEPROM IDENT Words

Notes:

- The Revision Number is the logic firmware and hardware functional revision level of the module. The hardware revision number does not necessarily correspond to the hardware assembly level. The bits definitions are:
 - Bit(s) Description
 - 15-12 Software Major Revision (1.0 is first major release)
 - 11-8 Software Minor Revision
 - 7-4 Hardware Major Revision (1.0 is first major release)
 - 3-0 Hardware Minor Revision
- 2) The Module Characteristics bit definitions are:

Bit(s)	<u>Description</u>	Bit(s)	Description								
15	0 = no burst access	8/7	00 = no DMA requestor								
14/13	Unused	6/5	11 = INTC (INTB also supported)								
12	$1 = $ module needs $\pm 12V$	4/3	10 = 32-bit data								
11	1 = module needs + 5V	2/1	00 = 8-bit address bus								
10	1 = trigger outputs supported	0	0 = no memory access								
9	1 = trigger inputs supported										
	No. 1. The second second start in the fail second										

- 3) The VXI Device Type word contains the following information:
 - Bit(s) Description
 - 15-12 $F_{16} = 256$ bytes of required memory
 - 11-0 $FD4_{16} = C\&H$ specified VXI model code for M228

4.0 OPERATION

The M228 is a register-based instrument that is controlled through a series of registers described in Section 3.3.1. A high-level software driver is available to aid in programming of the module.

4.1 A/D CONVERSION

The M228 uses a fast, low power, precision, 14-bit analog-to-digital converter (ADC) that use a successive approximation capacitive digital-to-analog (CDAC) converter architecture that has no pipeline delay. The M228 uses two of the ADC's conversion modes for operation. In Normal Mode, the ADC is capable of performing conversions at a throughput rate up to 800KSPS and has no limitation on the time between conversions. In Warp mode, the specified accuracy is only guaranteed if the time between conversions is less than 1ms. If the time between two consecutive conversions exceeds 1ms, the first conversion result should be ignored. In Warp mode, the ADC performs a background calibration during the conversion process. This calibration can drift if the time between conversions exceeds 1ms causing the first conversion to appear offset.

4.2 VALUE-TIME PAIR STORAGE

When and how the 14-Bit A/D Data Value and 32-Bit Timestamp are stored in the FIFO memory depends on a number of factors. These factors include the Continuous Capture Mode (CCM), the Storage Mode (STM), the Force Store (FST) setting, the A/D Conversion Enable (ACE), the Timestamp Run (TRUN) setting, and Aperture Compare result.

In Capture-Till-Full (CTF) mode (CCM = 0), the memory is treated as a standard FIFO (i.e. First In First Out) buffer. If memory becomes full, a FIFO Full Error occurs and data capturing stops. In Continuous Capture Mode (CCM = 1), the memory is treated as a circular overwriting FIFO buffer. If memory becomes full, a FIFO Full indicator occurs but data capturing continues overwriting the oldest data. When using CCM, it is best to use the Random Data Port and Random Data Address Registers to access the memory data. Given the large size of the FIFO memory, these registers allow easy access to the desired data without having to read the entire FIFO. Although memory can be read while data is being captured and stored, it is not recommended when using CCM, because the data pointer location may be indeterminate.

The Storage Mode (STM) setting determines whether the full value-timestamp pair, just the data value, or nothing is stored in the FIFO. If all A/D data is being stored (i.e., Force Store (FST = 1) mode) and the timestamp is not important, the user can set the Storage Mode (STM) in the Master Control Register to "Value Storage Only" mode. In this mode, twice as much memory is available for data.

If A/D conversion and data storage is enable, a value-time pair storage automatically occurs when the timestamp run is enabled, a timestamp rollover occurs, and when the timestamp run is disabled. These extra storage points can be used by software to easily determine start, rollover, and stop reference points.

4.3 APERTURE WINDOWS

The Aperture Windows define the criterion applied in real-time to determine whether or not to store data in the FIFO. There are two sets of aperture windows and each set has a high and a low value. How these aperture windows are used is determined by the Aperture Mode defined in the Clock/Aperture Control Register. Some modes use the aperture registers to define a minimum delta change required to store data and other modes use the registers to define an absolute level that data must be above or below to permit storage. Some modes combine the usage, by using Aperture Set A differently from Aperture Set B.

The aperture window set (A or B) used depends on the Aperture Mode and possibly the ASEL signal. Some aperture modes start off using aperture set A and automatically switch to aperture set B. Other aperture modes use the window set specified by the ASEL signal. The source of the ASEL signal is specified in the Function Source Control Register. The specified signal determines if aperture window set A or B is used. This signal can be changed in real-time, allowing dynamic control of the data stored.

4.3.1 Aperture Mode 0

Aperture Mode 0 "Store if outside selected aperture window", allows the user to store data only if it changes more than a specified amount. For instance, if only signal changes greater than 200mV is positive direction and 100mV in the negative direction are important, the user can specify Aperture Mode 0 and set Aperture Set A High to 200mV and Aperture Set B to 100mV. The A/D reading will be stored if it is above the last stored value plus the programmed Aperture High value or it is below the last stored value minus the Aperture Low value, then the new data value is stored in the FIFO. In this mode, only positive aperture values can be specified.

4.3.2 Aperture Mode 1

Aperture Mode 1 "Store once outside selected absolute window A and outside of aperture window B", allows the user start storing data once the signal level is outside of a specified window, in effect setting a trigger level. For example, if the user would like to store all data if the signal rises above 1V, Aperture High A would be set to 1V and Aperture Low A would be set to a large negative value. Aperture High and Low B would be set to 0V to effectively store all. Operation begins with Aperture Set A. If the signal level is outside the specified absolute aperture window, the logic stores the value and switches to Aperture Set B and delta window comparison. Operation continues with Aperture Set B until the FIFO is reset.

4.3.3 Aperture Mode 2

Aperture Mode 2 "Store if outside absolute window A and outside of aperture window B", allows the user only store data if the signal level is outside of a specified window level and the delta from the last value stored is greater than some amount. The mode is similar to Aperture Mode 1, except data is only stored if it is outside of the absolute window specified by Aperture Set A. For example, if the user would like to store data only if it is greater than +1V and less than -2V, Aperture High A would be set to +1V and Aperture Low A would be set to -2V. Aperture High and Low B would be set to level of signal change that is important as discussed in Aperture Mode 0.

4.3.4 Aperture Mode 3

Aperture Mode 3 "Store once inside selected absolute window A and outside of aperture window B", allows the user start storing data once the signal level falls inside of a specified window. This mode is very similar to Aperture Mode 1, except data storage will begin if the signal falls or rises to be within a specified window.

4.3.5 Aperture Mode 4

Aperture Mode 4 "Store if inside absolute window A and outside of aperture window B", allows the user start storing data if the signal level is inside of a specified window level. This mode is very similar to Aperture Mode 2, except data storage is stored only if the signal is inside a specified window.

4.3.6 Aperture Mode 5

Aperture Mode 5 "Store if outside both absolute window A and B", allows the user store all data that is outside of two absolute windows. For example, if data storage is not important when the signal is between -2V and -3V or between +4V and +8V, aperture set A would be set to -2V and -3V and aperture set B would be set to +8V and +4V. Data will be stored on every sample clock is the data level is not within on the specified windows.

4.3.7 Aperture Mode 6

Aperture Mode 6 "Store if inside either absolute window A and B", allows the user store all data that is inside of either absolute windows. This mode is very similar to Aperture Mode 5, except data is stored only if it is inside either window.

4.4 FILTER SELECTION

Two types of anti-aliasing filters and a bypass mode are provided. Using the Anti-Aliasing Filter Control Register the filter type and cutoff frequency can be selected. The elliptic filter is a 10th order low pass filter with a linear phase and a root raised cosine amplitude response. It has very steep roll-off and its cutoff frequency is programmable from 1.6 KHz to 104 KHz. The Bessel filter is an 8th order low pass filter with a linear phase response over its entire passband. It exhibits little to no over-shoot, under-shoot, or ringing with pulse type signals and its cutoff frequency can be programmed from 300Hz to 88 KHz. If desired, the filters can be bypass. In the case, only a fixed 2nd order active RC low pass filter with a cutoff frequency of around 400 KHz is provided.

Calibration is provided through an on-board digital potentiometer that allows adjustment of the 0V offset and full scale reading. Calibration can be performed using on-board references or at a system level using external references. Calibration values are stored in an on-board non-volatile 512 byte EEPROM. The calibration data is stored in the EEPROM as shown in Table III and Table IV.

Byte(s)	Description	Size	Format
000-00E	Instrument Name	15 bytes	M228ApertureA/D
00F	Number of Entries	1 byte	0 - 255
010-02F	Calibration Entry 1	32 bytes	See Calibration Entry Table
030-04F	Calibration Entry 2	32 bytes	"
050-06F	Calibration Entry 3	32 bytes	n .
070-08F	Calibration Entry 4	32 bytes	"
090-0AF	Calibration Entry 5	32 bytes	n .
0B0-0CF	Calibration Entry 6	32 bytes	n .
0D0-0EF	Calibration Entry 7	32 bytes	"
0F0-10F	Calibration Entry 8	32 bytes	n .
110-12F	Calibration Entry 9	32 bytes	n .
130-14F	Calibration Entry 10	32 bytes	n .
150-16F	Calibration Entry 11	32 bytes	n .
170-18F	Calibration Entry 12	32 bytes	n .
190-1AF	Calibration Entry 13	32 bytes	n .
1B0-1CF	Calibration Entry 14	32 bytes	n .
1D0-1EF	Calibration Entry 15	32 bytes	n .
1F0-1FF	not used*	15 bytes	<i>n</i>

Table III. EEPROM Calibration Data Format

* Note: The last two bytes of the EEPROM are used for internal logic operation.

Byte(s)	Description	Size	Format
00-0A	Calibration Description	11 bytes	ASCII
0B-12	Calibration Date	8 bytes	YYYYMMDD
13-18	Calibration Time	6 bytes	HHMMSS
19	Calibration Temperature	1 byte	Degrees C
1A	Calibration Type	1 byte	Internal (0, 1, 2) or
			External (3)
1B	Front End Configuration	1 byte	d0ff0bbb
1C	Filter Configuration	1 byte	00ttcccc
1D	Offset Cal Value	1 byte	0 - 255
1E	Full Scale Cal Value	1 byte	0 - 255
1F		null	

Table IV. Single Calibration Entry Format

Legend: d = divider value, f = Frontend Gain, b = Backend Gain, t = filter type, c = cutoff frequency

4.6 ID PROM

Refer to 3.3.2 for a description of the ID PROM's function and contents. The ID PROM is a serial device and accessing it involves writing and reading a register in a sequential manner to acquire data. Figure 10 provides a general description of the code sequence necessary to read the information from the PROM. The PROM is a standard IC 9603 type PROM. For specific timing information refer to the 9603 or compatible PROM data sheet.

```
-----*/
int read_idword (unsigned short id_addr, unsigned short *value){
 addr = 0xFE; /* M/MA address for IDPROM */
id_addr = 0x80 | id_addr; /* 80 is the read opcode for the PROM */
 write_eebyte (addr, id_addr);
 read_eebyte (addr,&rdval);
                               /* returns first byte of IDPROM */
                               /* upper byte of sync code word */
/* returns first byte of IDPROM */
/* combine bytes of sync code */
 tmpval = rdval << 8;</pre>
 read_eebyte (addr,&rdval);
 tmpval = tmpval | rdval;
 *value = tmpval;
 write_word(addr, 0x0000);
                                /* lower cs */
 return;
}
                _____
int write_eebyte (unsigned long addr, unsigned short value){
 temp = value;
 for (i=0;i<=7;i++) {
   write_eebit(addr, ((temp & 0x80)>>7));
   temp = (temp << 1);
 }
return;
}
    */
int write_eebit (unsigned long addr, unsigned short value){
 temp = (0x0004 | (value & 0x0001)); /* set data bit before clock */
 write_word(addr, temp);
 Delay(.000005);
 temp = (0x0006 | (value & 0x0001)); /* set data bit & clock */
 write_word(addr, temp);
 Delay(.000005);
 return;
     .....*/
int read_eebyte (unsigned short addr, unsigned short *value){
 for (i=7;i>=0;i=i-1) {
   read_eebit (addr, &rdval);
   temp = temp | ((rdval&0x01) << i);</pre>
  *value = temp;
 return;
 *_____
                                          ----*/
int read_eebit (unsigned short addr, unsigned short *value){
 Delay(.000005);
 write_word(addr, 0x6);
                              /* raise clock bit */
 Delay(.000005);
 read_word (addr, value);
 return;
 *_____*
 NOTE: 1. write word and read word are low level memory access routines.
      2. NOT actual code and should be treated as a modeling tool only.
```

Figure 10. ID PROM Access Routine

APPENDIX A: CONNECTORS

Pin	Row A	Row B	Row C
1	/CS	GND	(/AS)
2	A01	+5V	D16
3	A02	+12V	D17
4	A03	-12V	D18
5	A04	GND	D19
6	A05	(/DREQ)	D20
7	A06	(/DACK)	D21
8	A07	GND	D22
9	D08	D00/(A08)	TRIGA
10	D09	D01/(A09)	TRIGB
11	D10	D02/(A10)	D23
12	D11	D03/(A11)	D24
13	D12	D04/(A12)	D25
14	D13	D05/(A13)	D26
15	D14	D06/(A14)	D27
16	D15	D07/(A15)	D28
17	/DS1	/DS0	D29
18	DTACK	/WRITE	D30
19	/IACK	/IRQ	D31
20	/RESET	SYSCLK	/DS2

Note: Signals in parentheses () are not used on this module.

Figure A-1. M/MA Interface Connector Configuration

/								
	16	21						
1	17	31						
2	18	32	<u>PIN</u>	<u>SIGNAL</u>	<u>PIN</u>	<u>SIGNAL</u>	<u>PIN</u>	<u>SIGNAL</u>
3		33	1	AIN+	16	AIN-	31	GND
4	19	34	2	GND	17	GND	32	FPINA
	20		3		18		33	GND
5	21	35	4		19		34	FPINB
6		36	5		20		35	GND
	22		6		21		36	FPOUTA
7	23	37	7		22		37	GND
8		38	8		23		38	FPOUTB
	24		9		24		39	GND
9	25	39	10		25		40	AUX+5V
10		40	11		26		41	GND
11	26	41	12		27		42	AUX+12V
	27		13		28		43	GND
12	20	42	14		29		44	AUX-12V
13	28	43	15		30			
	29							
14	30	44						
15	00							
$\overline{\ }$	/							

Figure A-2. Front Panel Coax D-SUB Connector Configuration

NOTES:

C&H Technologies, Inc. <> 445 Round Rock West Drive <> Round Rock, TX 78681 <> www.chtech.com

READER'S COMMENT FORM

Your comments assist us in improving the usefulness of C&H's publications; they are an important part of the inputs used for revision.

C&H Technologies, Inc. may use and distribute any of the information that you supply in any way that it believes to be appropriate without incurring any obligation whatsoever. You may, of course, continue to use the information, which you supply.

Please refrain from using this form for technical questions or for requests for additional publications; this will only delay the response. Instead, please direct your technical questions to your authorized C&H representative.

COMMENTS:

Thank you for helping C&H to deliver the best possible product. Your support is appreciated.

Sincerely,

F. R. Harrison President and CEO

INSTRUCTIONS

In its continuing effort to improve documentation, C&H Technologies, Inc. provides this form for use in submitting any comments or suggestions that the user may have. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. Please try to be as specific as possible and reference applicable sections of the manual or drawings if appropriate. Also, indicate if you would like an acknowledgment mailed to you stating whether or not your comments were being incorporated.

NOTE: This form may not be used to request copies of documents or to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

- (Fold along this line) -

(Fold along this line) -

Place Stamp Here

C&H Technologies, Inc. Technical Publications 445 Round Rock West Drive Round Rock, Texas 78681-5012