
AcQuisition Technology bv

Headquarters:
Raadhuislaan 27a
5341 GL OSS
THE NETHERLANDS

Postal address:
P.O. Box 627
5340 AP OSS
THE NETHERLANDS

Phone: +31-412-651055
Fax: +31-412-651050
Email: info@acq.nl
WEB: http://www.acq.nl

M360
CANbus M-module

User Manual

Version 1.0

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands

Copyright statement: Copyright ©2000 by AcQuisition Technology bv - OSS, The Netherlands

All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language, in any form or by any means without the written
permission of AcQuisition Technology bv.

Disclaimer:

The information in this document has been carefully checked and is believed to be entirely reliable.
However, no responsibility is assumed for inaccuracies. AcQuisition Technology does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it
convey any license under its patent rights nor the rights of others. AcQuisition Technology products
are not designed, intended, or authorized for use as components in systems intended to support or
sustain life, or for any other application in which the failure of an AcQuisition Technology product
could create a situation where personal injury or death may occur, including, but not limited to
AcQuisition Technology products used in defence, transportation, medical or nuclear applications.
Should the buyer purchase or use AcQuisition Technology products for any such unintended or
unauthorized application, the buyer shall indemnify and hold AcQuisition Technology and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that
AcQuisition Technology was negligent regarding the design or manufacture of the part.

Printed in The Netherlands.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 1 of 39

CONTENTS

1. INTRODUCTION . 3
1.1. VALIDITY OF THE MANUAL . 3
1.2. PURPOSE . 3
1.3. SCOPE . 3
1.4. DEFINITIONS, ACRONYMS AND ABBREVIATIONS . 3
1.5. NOTES CONCERNING THE NOMENCLATURE . 3
1.6. OVERVIEW . 4

2. PRODUCT OVERVIEW . 5
2.1. INTRODUCTION . 5
2.2. TECHNICAL OVERVIEW . 5

3. INSTALLATION AND SETUP . 7
3.1. UNPACKING THE HARDWARE . 7
3.2. JUMPER SETTINGS . 7

3.2.1. SELECTING THE BUS TRANSCEIVER . 7
3.2.2. GALVANIC ISOLATION . 8
3.2.3. BUS TERMINATION . 8
3.2.4. EXAMPLE JUMPER SETTINGS . 8

3.3. CONNECTING THE MODULE . 9
3.4. SOFTWARE . 10

4. FUNCTIONAL DESCRIPTION . 11
4.1. INTRODUCING CAN . 11
4.2. CAN CHARACTERISTICS . 11
4.3. BLOCK DIAGRAM . 12
4.4. M-MODULE INTERFACE . 12
4.5. READING AND WRITING DATA . 13
4.6. STATUS LEDS . 14
4.7. RESET REGISTER . 14
4.8. INTERRUPT GENERATION . 14
4.9. MODULE IDENTIFICATION . 14
4.10. CANBUS INTERFACES . 15
4.11. POWER SUPPLY . 15

5. SOFTWARE . 17
5.1. APIS SUPPORT . 17

5.1.1. CONCEPT . 17
5.1.2. API . 17
5.1.3. CODE GENERATION . 18

5.2. TYPE DEFINITIONS AND STRUCTURES . 18
5.3. THE M360 LIBRARY . 19

5.3.1. TRANSMIT AND RECEIVE BUFFERS . 19
5.3.2. ACCEPTANCE FILTER . 19
5.3.3. ERROR COUNTERS . 20
5.3.4. ERROR CODES . 20

5.4. FUNCTION REFERENCE . 21
5.5. SOFTWARE DISTRIBUTION . 29

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 2 of 39

6. ANNEX . 31
6.1. BIBLIOGRAPHY . 31
6.2. COMPONENT IMAGE . 31
6.3. TECHNICAL DATA . 32
6.4. DOCUMENT HISTORY . 32
6.5. EXAMPLE CODE . 32

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 3 of 39

Figure 1 Example jumper nomenclature

1. INTRODUCTION

1.1. VALIDITY OF THE MANUAL

The contents of this manual is valid for M360 revision 3.x (hardware rev. 3, firmware rev. x).
The software library is based on APIS, AcQ Platform Interface Software version 2.0 and up.

1.2. PURPOSE

This manual serves as instruction for the operation of the M360 CANbus M-module, the connection of
peripheral devices, and the software library. Furthermore it gives the user additional information on
configuration of the assembly.

1.3. SCOPE

Detailed information concerning the individual assemblies (data sheets etc.) Are not part of this
manual. The bibliography can be found in the annex.

1.4. DEFINITIONS, ACRONYMS AND ABBREVIATIONS

AcQ AcQuisition Technology bv
APIS AcQ Platform Interface Software
CANbus Controller Area Network, fieldbus protocol
M-module Mezzanine I/O concept according to the M-module specification

1.5. NOTES CONCERNING THE NOMENCLATURE

Hex numbers are marked with a leading “0x”-sign: for example: 0x20 or 0xff.

File names are represented in italic: filename.txt

Code example are printed in courier .

The jumpers are designated by a 'J', and a serial number. When specifying whether a jumper should
be connected or removed it is referred to solely by this designation if it has only one position (e.g., 'J5
connected'). However, if the jumper has more than one position, it is also indicated which pins are
connected to each other (e.g. 'J8,1-2'). Pin 1 of a jumper is always marked in the configuration
diagram.

In some illustrations jumpers are shown merely for purposes of orientation. In this case they are
indicated with a dotted line. Their correct setting is described in another chapter.

Active-low signals are represented by a trailing asterisks (i.e. IACK*).

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 4 of 39

1.6. OVERVIEW

In chapter two a short description of the M360 CANbus M-module can be found. The next chapter
covers the installation and setup of the module as well as the connection of the CANbus lines. In
chapter 4 the functionality of the M360 CANbus M-module is described in detail. AcQ provides an
APIS based ANSI C library for the M360 CANbus M-module, the software is described in chapter 5.
Finally this document contains an Annex containing a bibliography, component image, technical data,
document history and a programming example.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 5 of 39

2. PRODUCT OVERVIEW

2.1. INTRODUCTION

The M360 CANbus Controller is designed as a plug-on module with a M-module interface based on
the SJA1000, a highly integrated stand-alone controller for the Controller Area Network (CAN).

CAN is used within automotive and general industrial environments. The M360 contains all necessary
hardware for a high performance serial network communication. The M360 performs all the functions
of the physical and data-link layers.

The use of the M360 CAN bus controller in an industrial environment, results in a reduction of wiring
harness and an enhanced diagnostic and supervisory capability.

The software library is available, so an application can be programmed without knowing something of
the hardware.

2.2. TECHNICAL OVERVIEW

! SJA1000, CAN bus stand-alone controller from Philips
! Galvanic isolation
! Programmable data transmission rate, up to 1 Mbit/s
! Two different physical CAN bus interfaces
! Identification EEPROM
! Two status Leds on front
! APIS based library

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 6 of 39

This page contains no essential data.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 7 of 39

3. INSTALLATION AND SETUP

3.1. UNPACKING THE HARDWARE

The hardware is shipped in an ESD protective container. Before unpacking the hardware, make sure
that this takes place in an environment with controlled static electricity. The following
recommendations should be followed:

! Make sure your body is discharged to the static voltage level on the floor, table and system
chassis by wearing a conductive wrist-chain connected to a common reference point.

! If a conductive wrist-chain is not available, touch the surface where the board is to be put
(like table, chassis etc.) before unpacking the board.

! Leave the board only on surfaces with controlled static characteristics, i.e. specially designed
anti static table covers.

! If handling the board over to another person, touch this persons hand, wrist etc. to discharge
any static potential.

IMPORTANT: Never put the hardware on top of the conductive plastic bag in which the hardware is
shipped. The external surface of this bag is highly conductive and may cause rapid
static discharge causing damage. (The internal surface of the bag is isolating.)

Inspect the hardware to verify that no mechanical damage appears to have occurred.
Please report any discrepancies or damage to your distributor or to AcQuisition
Technology immediately and do not install the hardware.

3.2. JUMPER SETTINGS

To work properly, the M360 CANbus controller module must be configured according to the particular
circumstances.

3.2.1. SELECTING THE BUS TRANSCEIVER

Select the PCA82C250T CAN bus transceiver:
! Place jumpers J5, J6, J8 and J9 on the 1-2 position.

Select the SN75176B RS-485 transceiver:
! Place jumpers J5, J6, J8 and J9 on the 2-3 position.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 8 of 39

Figure 2 Example jumper settings

3.2.2. GALVANIC ISOLATION

Select the galvanic isolation:
! Remove Jumpers J1, J2, J3 and J4.
! Select the isolated power source. Power is supplied by either the local DC/DC converter or an

externally connected source.
! Select the local DC/DC converter for the isolated power source:

Place jumper J7 to position 3.
! Or select the externally connected power source:

Place jumper J7 to position 1.
! Insert two opto-couplers, type HP-7100, in the U8 (top up) and U9 (top down) position.
! If the external power supply is selected, connect it to the front D-sub connector after the

module is mounted on the baseboard. The input voltage must be connected to pin 9 (external
positive supply) and pin 3 (ground) and will be +7V < V+ < +13V.

Select the non galvanic isolation:
! Place jumpers J1, J2, J3 and J4.
! Place jumper J7 to position 2.

3.2.3. BUS TERMINATION

On both ends of the CAN bus the physical line must be terminated by a 124 Ohm resistance.
! Place jumper J10, if the M360 is at the end of the physical line.

3.2.4. EXAMPLE JUMPER SETTINGS

Figure 2 shows the jumper settings for the following case:

Standard PCA82C250T CAN bus transceiver selected,
Jumpers J5, J6, J8 and J9 are in position 1-2.

Galvanic isolation selected,
Opto-couplers(HP-7100) U8 and U9 are inserted and
jumpers J1, J2, J3 and J4 are removed and
jumper J7 is in position 3.

Bus terminated,
Jumper J10 is inserted.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 9 of 39

Figure 3 Front view 9 pole
D-sub

Figure 4 Top view 24 pole
female header

3.3. CONNECTING THE MODULE

The M360 features a 9 pole D-sub connector for interfacing with the CANbus. The M360 can also be
connected with the CANbus through the 24 pole female header.

The table below contains an overview of the connectors layout.

Signal Description 9 pole D-sub
connector

24 pole
female header

CAN_L CAN_L bus line (dominant low) 2 2

CAN_H CAN_H bus line (dominant high) 7 1

GND Ground (external) 3 5

VEXT Optional external positive supply +7V < VEXT
< +13V (dedicated for supply of transceiver
and opto-couplers, if galvanic isolation of the
bus node applies).

9 4

(GND) Optional ground 6 6

+wireA PCA82C250T high output - 7

-wireA PCA82C250T low output - 8

+wireB SN75176B A output - 9

-wireB SN75176B B output - 10

TXOI SJA1000 transmit line to driver - 11

RXOI SJA1000 receive line from driver - 12

- Reserved 1, 4, 5, 8 3, 13...24

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 10 of 39

3.4. SOFTWARE

M360 Example software is APIS based, therefore APIS support for the target platform is required for
code generation.

Code generation is platform dependent, for information on building the software please refer to the
release notes of APIS for the target platform and the APIS Programmer's Manual.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 11 of 39

4. FUNCTIONAL DESCRIPTION

4.1. INTRODUCING CAN

The Controller Area Network (CAN) is a data communication network designed to fit distributed
real-time control applications. It was originally developed and applied by the automotive industry to
solve the cabling problem inside vehicles.

The main applications for CAN-based networks in an industrial environment are:
! as a field bus in industrial plants.
! as an "in-machine" local bus in large tooling equipment, etc.

CAN is a serial communications protocol, originally specified by Bosch. The protocol handles multiple
processors. Each of these processors can send and receive priority messages. CAN nodes request
data by sending a Remote Frame message; the requested data is sent via a Data Frame with the
same message ID. Messages are acknowledged by sending an ACK message.
Transmitted messages pass to all nodes on the bus (multi-cast), all of which take the message frame.
The received messages are then filtered based on the message IDs.
CAN has only four message types: Data Frame, Remote Frame (request data), Error Frame (signals
a local node error), and an Overload Frame (extend delay before next frame). As CAN nodes place
requests, the highest priority one take the bus (priority is based on recessive vs dominant bits, where
the dominant bits override the recessive bits).

4.2. CAN CHARACTERISTICS

! Multi master - multiple masters
! Priority-based transmissions: on message ID by node hardware
! All messages are received by all nodes; ID is the priority
! Message filtering: nodes filter messages using IDs before use
! 11- or 29-bit message ID
! Fixed message forms: variable length, to 8 bytes of data
! Built-in error detection and recovery
! Guaranteed latency for high-priority messages
! Low-power and radiation-noise implementations
! High reliability: CRC, message frame check, transmission monitoring
! Bit transmission to 1 Mbps
! Accommodates 100m between nodes (40m at 1 Mbps)

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 12 of 39

4.3. BLOCK DIAGRAM

Figure 5 Example picture

4.4. M-MODULE INTERFACE

The M-module interface databus is 8 bits wide and supports low-byte transfers (d0..d7). The local bus
interface to the CAN controller is based on the Intel principals with a multiplexed address/data bus.

Chip select signals, interrupt lines, enable lines and signals needed for identification readout are
derived from the M-module interface by PLD's (U3 and U4).

A 16MHz crystal (default) or the M-module bus clock provides the clock signal.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 13 of 39

The addressable registers of the M360 are displayed in the following table.
Offset is the value which must be added to the (even) base address of the module.

Offset Stand-alone CAN controller control 1

0x01
0x03
0x05
0x07
0x09
0x0b
0x0d
0x0f
0x11
0x13

Control register
Command register
Status register
Interrupt register
Acceptance code register
Acceptance mask register
Bus timing 0 register
Bus timing 1 register
Output control register
Test register

Offset Transmit buffer

0x15
0x17
0x19
0x1b

...
0x27

Identifier (10 to 3)
Identifier (2 to 0), RTR and data length code
Data byte 1
Data byte 2
Data byte ...
Data byte 8

Offset Receive buffer

0x29
0x2b
0x2d
0x2f
...

0x3b

Identifier (10 to 3)
Identifier (2 to 0), RTR and data length code
Data byte 1
Data byte 2
Data byte ...
Data byte 8

Offset Stand-alone CAN controller control 2

0x3d Clock divider

Offset M360 M-module control

0x40
0x80
0xff

LEDs register
Reset register
Identification control

4.5. READING AND WRITING DATA

Reading or writing to the SJA1000 registers is done by accessing one of the registers from the table
above. For a detailed description of the registers, please refer to the specification of the SJA1000
CAN controller.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 14 of 39

4.6. STATUS LEDS

The two status LEDs at the M360 front can be turned off and on by writing to the front LED register
(offset 0x40).
The GREEN LED is on when a ‘1' is written to bit 0 of the register.
The RED LED is on when a ‘1' is written to bit 1 of the register.

4.7. RESET REGISTER

After power up, the CAN controller is kept in reset state. Writing 0x01 to the reset register (offset
0x80) will release the reset.
Writing the sequence 0x00 0x01 will reset the hardware CAN controller.

4.8. INTERRUPT GENERATION

The M360 is capable of generating interrupts of type A, software-end-of-interrupt. Because
the M360 is not capable of delivering an interrupt vector, this must be handled by the
carrier board.

The interrupt register (offset 0x07) allows the identification of an interrupt source. When one or more
bits of this register are set, the M360 will generate an interrupt to the host. The interrupt service
routine must acknowledge the interrupt request by reading this register.

Interrupts can have several sources:
! Receiver interrupt
! Transmit interrupt
! Error interrupt
! Overrun interrupt
! Wake-up interrupt (can not be enabled)

For a detailed description, please refer to the specification of the SJA1000 CAN controller.

4.9. MODULE IDENTIFICATION

With revision 2.1 of the M-module specification a new feature is added, called ‘Module Identification’.
The idea behind the feature is that a universal piece of software should be able to determine what
module (and revision etc.) Is on a specific location. In order to do this an EEPROM type 93c06 (16x16
bits) is implemented.

The identification EEPROM contains the following information:

Word 0 Identification

Word 1 Module code

Word 2 Revision code

Word 3 Property of the module

Word 4 No intermodule port

Word 5...7 Reserved

Word 8...15 Dependent of the manufacturer

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 15 of 39

4.10. CANBUS INTERFACES

The M360 M-module contains a PCA82C250T CAN bus transceiver. This is the interface between the
CAN controller and the physical bus. It is fully compatible with the ISO/DIS 11898 standard and
primarily intended for high speed applications up to 1 Mbit/s.

The M360 M-module also contains a SN75176B differential bus transceiver. This meets the EIA
Standards RS-422-A and RS-485 and CCITT Recommendations V.11 and X.27.

Refer to chapter ? on how to select one of the transceivers.

4.11. POWER SUPPLY

The power voltage +5 Volt is supplied through the M-module interface.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 16 of 39

This page contains no essential data.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 17 of 39

5. SOFTWARE

This chapter describes the example software that is available for the M360 CANbus M-module. The
example software is available in ANSI-C source code and consists mainly of an M360 function library
which provides functions for easy access to the M360 and a demo program which illustrates the
usage of the software library.
The M360 library functions are APIS based, physical accesses and interrupt support are handled by
APIS, AcQ Platform Independent Interface Software. The next section contains general information
on APIS, for detailed information please refer to the APIS Programmer’s Manual.

5.1. APIS SUPPORT

AcQ produces and supports a large number of standard M-modules varying from networking and
process I/O to motion control applications. Physically, the M-modules are supported by a large
number of hardware platforms: VMEbus, PCI, CompactPCI as well as a wide variety of operating
systems: OS-9, Windows NT, Linux etc.
APIS offers a way to program platform independent applications, example- and test software for
controlling hardware. Application software written for APIS only needs re-compiling for a particular
platform and is operational with little effort (provided that the application is operating system
independent).

5.1.1. CONCEPT

Hardware accesses to registers and memory are handled by APIS. Some minor operating system
dependent functions frequently used in hardware related software, such as interrupt handling and a
delay function are also provided by APIS.
APIS platform support consists of an Application Programming Interface in the form of definition files
coded in ANSI-C and platform dependent modules e.g. source files, libraries and/or drivers.
In the most simple outline, a platform dependent APIS module consist of nothing more then macro
definitions in which APIS calls are substituted by direct hardware accesses. But in most cases an
APIS module will consist of a library with interface routines and in some implementations a device
driver is needed for interaction with the operating system.

5.1.2. API

The Application Programming Interface for APIS is implemented in two ANSI-C coded definition files:
apis.h which contains general definitions and platform_apis.h which contains platform specific
definitions and references to the APIS function calls.
The application source file must include the APIS header file apis.h. Porting of the application to a
platform, consists of re-compiling the source code with a defined pre-processor macro for selection of
the used platform. The APIS header file contains generic APIS definitions and includes a platform
specific header file according to the platform selection macro.
API calls are translated to the platform specific calls in the APIS header file and the platform specific
definition file platform_apis.h (platform is a name that identifies a hardware and operating system
combination, e.g. i4000os9).
The macro PLATFORM must be defined, either via a pre-processor definition provided at compile
time or via a macro-definition in the application source.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 18 of 39

5.1.3. CODE GENERATION

APIS based example software is available in ANSI-C source code. Source code files must be
compiled with the pre-processor definition PLATFORM set to a valid value, conforming the target
platform. Building of the example software for the M360 is platform dependent, for details refer to the
release notes of the APIS support package of the target platform and the APIS Programmer’s
Manual.
Examples of APIS supported platforms are i4000os9, i2000dos, i3000win etc.

5.2. TYPE DEFINITIONS AND STRUCTURES

The table below contains a list and description of all types and structures used in the M360 example
software (standard ANSI-C types are not listed).

Name Type Description

INT8
UINT8
INT16
UINT16
INT32
UINT32

char
unsigned char
short
unsigned short
long
unsigned long

8-bit signed data
8-bit unsigned data
16-bit signed data
16-bit unsigned data
32-bit signed data
32-bit unsigned data

APIS_PATH unsigned long APIS physical path ID

M360_HANDLE void* M360 handle of a structure of
information

CAN_MSG struct {
 UINT16 id;
 UINT8 type;
 UINT8 length;
 UINT8 data[8];
}

CAN message contains:
CAN identification
Message type
Number of valid data bytes
Data bytes

ACC_FLT struct {
 UINT16 mask;
 UINT16 code;
}

Acceptance filter contains:
Mask
Code

ERR_CNT struct {
 UINT16 overflow;
 UINT16 overrun;
 UINT16 busOff;
 UINT16 txRx;
}

Error counters type contains:
Overflow error counter
Overrun error counter
Bus off error counter
Transmit/ receive error counter

MOD_ID struct {
 UINT16 modNumber;
 UINT8 majorHwRev;
 UINT8 minorHwRev;
 UINT8 majorSwRev;
 UINT8 minorSwRev;
}

Module identification contains:
Module number
Major hardware revision number
Minor hardware revision number
Major software revision number
Minor software revision number

M360 - CANbus M-module
User Manual Version: 1.0

Name Type Description

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 19 of 39

IOC_PRM union {
 UINT16 baudrate;
 ACC_FLT accFlt;
 ERR_CNT errCnt;
 MOD_ID modId;
 UINT8 irqFlags;
 UINT16 parm[8];
}

IO-Control parameters type contains:
Baudrate
Acceptance filter
Error counters
Module identification
Interrupt flags
Raw parameters

5.3. THE M360 LIBRARY

The library is based on APIS, and contains 6 functions. These functions are described in the next
section. Below the main aspects of the library will be discussed.

5.3.1. TRANSMIT AND RECEIVE BUFFERS

The library contains a transmit and a receive buffer. The buffers are based on a FIFO principle and
each one has 32 places to store CAN messages.

When the M360 CANbus M-module receives a message, it will be stored in the receive buffer. If the
receive buffer is full, the oldest message will be removed and the newest will be stored in the buffer.
The oldest message of the buffer will be read with the read function of the library.

The write function examines the M360 CANbus M-module. If the module is not busy, the message will
be transmitted immediately. Otherwise the message will be stored in the transmit buffer. When the
buffer is full the write function will NOT store the message in the transmit buffer and returns an
appropriated error code. When the M360 CANbus M-module is not busy anymore, the library is taking
care of the transmitting of all messages in the transmit buffer. The oldest message of the buffer will
be transmitted first.

5.3.2. ACCEPTANCE FILTER

The M360 CANbus M-module is equipped with a acceptance filter, which allows an automatic check
of the identifier and data bytes. Using these effective filtering methods, messages or a group of
messages not valid for a certain node can be prevented from being stored in the receive buffer. This
way it is possible to reduce the processing load of the host controller.

The filter is controlled by the acceptance code and mask. The received identifier is compared bitwise
with the acceptance code. The acceptance mask defines the bit positions, which are relevant for the
comparison (0 = relevant, 1 = not relevant). To accept a message all relevant receive identifier bits
have to match the respective bits of the acceptance code.

Note: Only the 8 most significant bits of the identifier of the CAN message are compared to the
values of the acceptance code and mask.

Example: MSB LSB

The acceptance code 0 1 1 1 0 0 1 0 0 1 1

The acceptance mask 0 0 1 1 1 0 0 0 1 1 0

Messages with the following 11-bit identifiers are accepted 0 1 x x x 0 1 0 x x x
(x = don’t care) ID.10 ID.0

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 20 of 39

5.3.3. ERROR COUNTERS

The library contains 4 error counters and each one will be increased when a corresponding error
occurs on the M360 CANbus M-module.

The following errors will increase the error counters:
! Receive buffer overflow.

This error occurs when the receive buffer is full and a new received message must be stored.
! Hardware buffer overrun.

This error occurs when the hardware receive buffer is full and a new message is received.
The buffer will be overwritten with the newest message.

! Hardware transmit / receive error.
The counter will be increased when M360 CANbus M-module detects errors on the CANbus.

! Bus-off error.
A bus-off error occurs when the M360 CANbus M-module has detected to many errors on the
CANbus. The hardware of the M360 CANbus M-module will reset itself.

5.3.4. ERROR CODES

If the execution of a function is successful the function returns zero, if not the function returns an
APIS error code. APIS error codes are 16-bit wide and are referred to with a symbolic name:
APIS_Exxxxxxxx, where xxxxxxxx is a short description of 8 characters max.

Error code Code Description

APIS_NOERR
APIS_ENOTSUP
APIS_EPARAM
APIS_EPARMOR
APIS_EPERMIT
APIS_EWIDTH
APIS_EGOS
APIS_EINVREQ
APIS_ENOMEM
APIS_EMODERR
APIS_ENOIRQH
APIS_EINVPATH
APIS_ESIG
APIS_EINVMOD
APIS_EINVDRV
APIS_EOPENDEV
APIS_ELOCK
APIS_EINCDEV
APIS_EPCIERR
APIS_EINVHND
APIS_EINVOFF
APIS_EINTRPT
APIS_ENIRQIU
APIS_ERESET
APIS_EFIFOEMP
APIS_EFIFOFULL
APIS_EFIFOFLOW

0x0000
0x0001
0x0010
0x0011
0x0012
0x0013
0x0014
0x0015
0x0016
0x0017
0x0018
0x0019
0x001a
0x001b
0x001c
0x001d
0x001e
0x001f
0x0020
0x0021
0x0022
0x0023
0x0028
0x0201
0x0202
0x0203
0x0204

no error
not supported function
bad parameter
parameter out of range
no permission
invalid data width
general operating system error
invalid request
no memory available
APIS support module not found
no interrupt handler installed
invalid path ID
signal error
invalid module
invalid driver
error opening device
device is already in use
incorrect device
PCI error
invalid handle
invalid offset
interrupt error
interrupt in use
module will not reset
FIFO buffer is empty
FIFO buffer is full
FIFO buffer has an overflow

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 21 of 39

5.4. FUNCTION REFERENCE

 m360_open () Open a path

Syntax: int m360_open (UINT32 apisPath, M360_HANDLE *handle,
 ACC_FLT *pAccFlt, UINT16 baudrate,
 UINT16 vector, UINT16 level)

Description: A physical path will be opened for the requested path. The path is system dependent
and can be hardware address, port ID or an index number of some kind. The interrupt
service routine will be installed. This routine also initializes the M360 CANbus
M-module. It initializes the receive buffer and transmit buffer, and resets the error
counters.

Arguments: UINT32 path
The definition of the path ID is platform dependent. A path ID of zero selects
the platform default ID.

M360_HANDLE *handle
Handle pointer to a structure with information specific for a M360 CANbus
M-module.

ACC_FLT *pAccFlt
The 8 most significant bits of the identifier of the CAN message are
compared to these values. Thus always groups of eight identifiers can be
defined to be accepted for any node. At the bit positions containing a ‘1' in
the Acceptance mask value, any value is allowed in the composition of the
identifier. The other bit positions must be equal to the Acceptance code
value.

UINT16 baudrate
The baud rate of the CAN bus. This can be 10k, 20k, 50k, 125k, 250k, 500k,
800k or 1Mbit/s.

UINT16 vector
Interrupt vector.

UINT16 level
Interrupt level.

Returns: APIS_NOERR
The function executed successful.

APIS_Exxxxxxxx
There was an error during the execution of this function.

Example: int idx, result;
UINT16 vector = 0, level = 0;
APIS_PATH path;
M360_HANDLE handle;
ACC_FLT accFlt = {0xff, 0xff};
UINT16 baudrate = CAN_1000K;

result = m360_open (path, &handle, &accFlt, baudrate,
vector, level);

if (result != APIS_NOERR)
{

 /* Do something with the error code. */
}

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 22 of 39

 m360_close() Close a path

Syntax: int m360_close (M360_HANDLE handle)

Description: A previously opened hardware path is closed. This routine reinitializes the M360
CANbus M-module. It removes the receive buffer and transmit buffer and resets the
error counters. The interrupts will be disabled and the interrupt service routine will be
removed.

Arguments: M360_HANDLE *handle
Handle of a structure with information specific for a M360 CANbus M-module.

Returns: APIS_NOERR
The function executed successful.

APIS_Exxxxxxxx
There was an error during the execution of this function.

Example: int result;
M360_HANDLE handle;

result = m360_close (handle);
if (result != APIS_NOERR)
{
 /* Do something with the error code. */
}

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 23 of 39

 m360_read () Read a CAN message

Syntax: int m360_read (M360_HANDLE handle, CAN_MSG *pMsg)

Description: This routine reads a received CAN message from the receive buffer. When there are
no received CAN messages, the routine will return an "Buffer empty" error-code.
When the receive buffer has an overflow, the routine will return an "Buffer overflow"
error-code.

Arguments: M360_HANDLE handle
Handle of a structure with information specific for a M360 CANbus M-module.

CAN_MSG *pMsg
Pointer to a received CAN message. This message includes the 11-bit
identifier, frame type, data length and the data (max. 8 bytes).

Returns: APIS_NOERR
The function executed successful.

APIS_Exxxxxxxx
There was an error during the execution of this function.

Example: int idx, result;
M360_HANDLE handle;
CAN_MSG msg;

result = m360_read (handle, &msg);
if (result == APIS_NOERR)
{
 printf ("Received: Id: 0x%04x ", msg.id);
 if (msg.type == DATA)
 {
 printf ("Type: data ");
 if (msg.length > 8)
 {
 msg.length = 8;
 }
 printf ("Data: ");
 for (idx = 0; idx < msg.length; idx++)
 {
 printf ("0x%02x ", msg.data[idx]);
 }
 }
 else
 {
 printf ("Type: request ");
 }
 printf ("\n");
}
else
{
 /* Do something with the error code. */
}

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 24 of 39

 m306_write () Write a CAN message

Syntax: int m360_write (M360_HANDLE handle, CAN_MSG *pMsg)

Description: This routine writes a CAN message to the M360 CANbus M-module. When the M360
is busy, the message will be written to the transmit buffer. This message will be
transmitted when the M360 is not busy. When the transmit buffer is full, the routine
will return an "Buffer full" error-code.

Arguments: M360_HANDLE handle
Handle of a structure with information specific for a M360 CANbus M-module.

CAN_MSG *pMsg
Pointer to a CAN message which must be transmitted. This message
includes the 11-bit identifier, frame type, data length and the data (max. 8
bytes).

Returns: APIS_NOERR
The function executed successful.

APIS_Exxxxxxxx
There was an error during the execution of this function.

Example: int idx, result;
M360_HANDLE handle;
CAN_MSG msg;

msg.id = 0x200;
msg.type = DATA;
msg.length = 8;

for (idx = 0; idx < msg.length; idx++)
{
 msg.data[idx] = 0x100 + idx;
}

result = m360_write (handle, &msg);
if (result != APIS_NOERR)
{
 /* Do something with the error code. */
}

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 25 of 39

 m360_ioctrl () Perform control commands

Syntax: int m360_ioctrl (M360_HANDLE handle, UINT16 command,
 IOC_PRM *pParm)

Description: This routine performs control commands with the information stored in the control
parameters. Or gives information back through these control parameters. The
following control commands will be available:

Command Parameters Description

SET_BAUDRATE pParm->baudrate This command sets the baud rate of
the CAN bus. This can be 10k, 20k,
50k, 125k, 250k, 500k, 800k or
1Mbit/s.

GET_BAUDRATE pParm->baudrate This command returns the
established baud rate of the CAN
bus.

SET_ACCFLT pParm->accFlt.code
pParm->accFlt.mask

This command sets the acceptance
code and mask of the M360 CAN
bus M-module.

GET_ACCFLT pParm->accFlt.code
pParm->accFlt.mask

This command returns the
established acceptance code and
mask.

GET_ERRCNT pParm->errCnt.overflow
pParm->errCnt.overrun
pParm->errCnt.busOff
pParm->errCnt.txRx

This command returns the error
counters of the M360 CAN bus
M-module.

RESET_IRQF pParm->irqFlags This command resets the interrupt
flags of the M360 CAN bus
M-module.

GET_IRQF pParm->irqFlags This command returns the interrupt
flags of the M360 CAN bus
M-module.

GET_MODID pParm->modId.modNumber
pParm->modId.majorHwRev
pParm->modId.minorHwRev
pParm->modId.majorSwRev
pParm->modId.minorSwRev

This command returns the module
identification and the hardware- and
software-revision.

FLUSH_BUF - This command clears the receive
and transmit buffers.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 26 of 39

Arguments: M360_HANDLE handle
Handle of a structure with information specific for a M360 CANbus M-module.

UINT16 command
This control command will be performed.

IOC_PRM *pParm
The information parameters of the control command.

Returns: APIS_NOERR
The function executed successful.

APIS_Exxxxxxxx
There was an error during the execution of this function.

Example: int result;
M360_HANDLE handle;
IOC_PRM parm;

result = m360_ioctrl (handle, GET_MODID, &parm);
if (result == APIS_NOERR)
{
 printf ("M-module M%d\n", parm.modId.modNumber);
 printf ("Hardware revision %d.%d\n",
 parm.modId.majorHwRev, parm.modId.minorHwRev);
 printf ("Software revision %d.%d\n",
 parm.modId.majorSwRev, parm.modId.minorSwRev);
}
else
{
 /* Do something with the error code. */
}

parm.baudrate = CAN_20K;
result = m360_ioctrl (handle, SET_BAUDRATE, &parm);
if (result != APIS_NOERR)
{
 /* Do something with the error code. */
}

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 27 of 39

 m360_waitforirq () Wait for interrupt

Syntax: int m360_waitforirq ()

Description: Suspend current process. When a signal is received that is sent by an APIS interrupt
service routine, this function returns with APIS_NOERR as result code. If a signal is
received not caused by APIS (e.g. keyboard interrupt), the function returns with
APIS_ESIG as result code. The interrupts received before m360_waitforirq is called
are not missed.

Arguments: .
No parameters.

Returns: APIS_NOERR
The function executed successful.

APIS_ESIG
There was an interrupt received, but not caused by APIS.

APIS_Exxxxxxxx
There was an error during the execution of this function.

Example: int result;
M360_HANDLE handle;
CAN_MSG msg;
IOC_PRM parm;

printf ("Waiting...\n");
do
{
 result = m360_waitforirq();
 m360_ioctrl (handle, GET_IRQF, &parm);
} while ((result == APIS_NOERR) &&
 ((parm.irqFlags & M360_RX_IRQ) != M360_RX_IRQ));

if (result == APIS_ESIG)
{
 /*
 * A signal is received, but not caused by APIS
 * (e.g. keyboard interrupt).
 */
}

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 28 of 39

else if ((parm.irqFlags & M360_RX_IRQ) == M360_RX_IRQ)
{
 /* The M360 M-module has received a message. */
 parm.irqFlags = M360_RX_IRQ;
 m360_ioctrl (handle, RESET_IRQF, &parm);

 result = m360_read (handle, &msg);
 if (result == APIS_NOERR)
 {
 /* Do something with the message. */
 printf ("Received: Id: 0x%04x ", msg.id);
 if (msg.type == DATA)
 {
 printf ("Type: data ");

 if (msg.length > 8)
 {
 msg.length = 8;
 }
 printf ("Data: ");
 for (idx = 0; idx < msg.length; idx++)
 {
 printf ("0x%02x ", msg.data[idx]);
 }
 }
 else
 {
 printf ("Type: request ");
 }
 printf ("\n");
 }
 else
 {
 /* Do something with the error code. */
 }
}
else
{
 /* Do something with the error code. */
}

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 29 of 39

5.5. SOFTWARE DISTRIBUTION

This section gives an overview of the software distribution.

File Description

m360rel.txt
m360lib.c
m360lib.h
M360loc.h
m360defs.h
fifo.c
fifo.h
m360main.c
modideep.c
ideeprom.h

Release notes
APIS based ANSI-C M360 software library
Definitions for M360 software library
Local definitions for M360 software library
Definitions of M360 M-module
APIS based ANSI-C FIFO buffer
Definitions for FIFO buffer
Example application source code
APIS based ANSI-C M-module ID EEPROM software library
M-module ID EEPROM definitions

The software is distributed on a 3.5" 1,44MB PC-HD format floppy disk. Other media are available on
request.

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 30 of 39

M360 example software is APIS based, therefore APIS support for the target platform is required for
code generation.

The following figure is an example of the M360 software integrated in the APIS environment with as
target platform the i4000/OS-9.

Code generation is platform dependent, for information on building the software please refer to the
release notes of the target platform and the APIS Programmer’s Manual.

+—--PROJECT AcQ’s distribution
 +—--APIS APIS basis distribution
 | +—–-DOC APIS documentation
 | +—–-SOFTWARE
 | | readme.txt Distribution overview
 | +—–-COMMON
 | | +—–-DEFS
 | | | apis.h General definitions
 | | +—–-OS9TRAP
 | | | +—–CMDS
 | | | apistrap OS-9 trap handler
 | | +—–-....
 | +—–-I4000OS9 i4000/OS-9 support
 | | relnotes.txt Release notes / version info
 | | apis_i4000os9.h Platform specific definitions
 | | apis_i4000os9.c Platform support library
 | +—–-....
 +—–-M360 M360 distribution
 | +—–-DOC M360 documentation
 | +—–-SOFTWARE
 | +—--LIB M360 support libraries
 | | m360rel.txt Release notes/version info
 | | m360lib.c APIS based ANSI-C library
 | | m360lib.h Definitions for library
 | | m360loc.h Local definitions for library
 | | m360defs.h Definitions of M360 M-module
 | | fifo.c APIS based ANSI-C FIFO buffer
 | | fifo.h Definitions for FIFO buffer
 | +---EXAMPLE
 | m360main.c Example source code
 +—–-MMODID
 +---SOFTWARE
 +---LIB
 modideep.c M-module ID EEPROM library
 ideeprom.h M-module ID definitions

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 31 of 39

6. ANNEX

6.1. BIBLIOGRAPHY

Specification for M-module interface and physical dimensions
M-module specification manual, April 1996, MUMM.
Simon-Schöffel-Strasse 21, D-90427 Nürnberg, Germany.

APIS Programmer’s Manual
AcQuisition Technology
P.O. Box 627, 5340 AP Oss, The Netherlands.

Data Sheet of the SJA1000
Data sheet SJA1000 Stand-alone CAN controller
Philips Electronics NV, Nov. 04 1997
P.O.Box 218, 5600 MD, Eindhoven, The Netherlands

Application note of the SJA1000
Application Note SJA1000 Stand-alone CAN controller, AN97076
Philips Electronics NV, Dec. 15 1997
P.O.Box 218, 5600 MD, Eindhoven, The Netherlands

6.2. COMPONENT IMAGE

Figure 6 M360 Components position

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 32 of 39

6.3. TECHNICAL DATA

Slots on the base-board:
Requires one 16-bit M-module slot.

Interrupt:
Interrupt of type A, software-end-of-interrupt.

Connection:
To base-board via 40 pole M-module interface.
To peripheral on the front via 9 pole D-sub connector, or via 24 pole header connector.

Power supply:
+5VDC ±10%, typical 175mA (from M-module baseboard, galvanic isolation voltage supply
from local DC/DC converter).

Temperature range:
Operating: 0..+60EC.
Storage : -20..+70EC.

Humidity:
Class F, non-condensing.

6.4. DOCUMENT HISTORY

! Revision 1.0
First release, this release replaces the Hardware Manual Revision 3.0 and Software
Manual Revision 3.0.

6.5. EXAMPLE CODE

/*
 * File: m360main.c
 * Revision: 1.0
 * Date: 11-01-00
 * Authors: MQ
 * --
 * Demo application
 *
 * The file contains the main function of the demo application of
 * the M360 CANbus M-module.
 *
 * --
 * Copyright 2000 by AcQuisition Technology bv.
 * All Rights Reserved
 * Reproduced Under License
 *
 * This source code is the proprietary confidential property of
 * AcQuisition Technology bv., and is provided to the licensee
 * for documentation and educational purposes only. Reproduction,
 * publication, or any form of distribution to any party other than
 * the licensee is strictly prohibited.
 * --
 * Edition History
 *

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 33 of 39

 * ##.## Data Comments By
 * ----- ---------- --- ------
 * 00.01 01-12-1999 Initial version MQ
 * 01.00 11-01-2000 First release MQ
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

#include "../LIB/m360lib.h"

/* Forward declarations */
void usage(char *pname);
void printError (int errorCode);

/*
 * Function: main
 *
 * Description: This is the main routine of the Demo application.
 *
 * Parameters: int argc,
 * char *argv[]
 * Parameters throughput
 *
 * Return: 0
 * Always zero.
 *
 */
int main (int argc, char *argv[])
{
 int idx1, idx2;
 int readMsg = 0, writeMsg = 0;
 UINT32 base = 0;
 UINT32 pass = 1, passed = 0;
 int result;
 APIS_PATH path = 0;
 M360_HANDLE handle;
 ACC_FLT accFlt = {0xff, 0xff};
 UINT16 baudrate = CAN_1000K;
 CAN_MSG msg;
 IOC_PRM parm;
 int data[9];

 printf("\nM360 CANbus M-module test\n");
 printf("by AcQuisition Technology B.V. 2000\n\n");

 for (idx1 = 1; idx1 < argc; idx1++)
 {
 if (argv[idx1][0] == '-')
 {
 for (idx2 = 1; argv[idx1][idx2]; idx2++)
 {
 switch (tolower(argv[idx1][idx2]))
 {
 case 'p':
 /* Set up a path to the hardware */
 if (argv[idx1][++idx2] == '=')
 {
 idx2++;

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 34 of 39

 sscanf(argv[idx1]+idx2, "%lx", &base);
 if (base != 0) {
 path = (APIS_PATH)base;
 }
 while(argv[idx1][idx2])
 {
 idx2++;
 }
 idx2--;
 }
 break;
 case 'r':
 /* We want to receive x messages */
 readMsg = 1;
 writeMsg = 0;
 if (argv[idx1][++idx2] == '=')
 {
 idx2++;
 sscanf(argv[idx1]+idx2, "%ld", &pass);
 while(argv[idx1][idx2])
 {
 idx2++;
 }
 idx2--;
 }
 break;
 case 'w':
 /* We want to transmit x messages */
 writeMsg = 1;
 readMsg = 0;
 if (argv[idx1][++idx2] == '=')
 {
 idx2++;
 sscanf(argv[idx1]+idx2, "%ld", &pass);
 while(argv[idx1][idx2])
 {
 idx2++;
 }
 idx2--;
 }
 break;
 case 'b':
 /* Change the baudrate */
 if (argv[idx1][++idx2] == '=')
 {
 idx2++;
 sscanf(argv[idx1]+idx2, "%d", &baudrate);
 while(argv[idx1][idx2])
 {
 idx2++;
 }
 idx2--;
 }
 break;
 default:
 usage(argv[0]);
 }
 }
 }
 }

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 35 of 39

 if (readMsg == writeMsg)
 {
 /* only read OR write */
 usage(argv[0]);
 }

 /* Open a path the the M360 CAN bus M-module */
 result = m360_open (path, &handle, &accFlt, baudrate, 0, 0);
 if (result != APIS_NOERR) {
 printError (result);
 return 0;
 }

 /* Get the module number and its revision number */
 m360_ioctrl (handle, GET_MODID, &parm);
 printf ("M-module M%d\n", parm.modId.modNumber);
 printf ("Hardware revision %d.%d\n", parm.modId.majorHwRev,
 parm.modId.minorHwRev);
 printf ("Software revision %d.%d\n", parm.modId.majorSwRev,
 parm.modId.minorSwRev);

 /* Transmit x CAN messages */
 if (writeMsg == 1)
 {
 do
 {
 idx1 = 0;
 printf ("Give CAN id: ");
 scanf ("%d", &data[idx1]);
 msg.id = (UINT16) data[0];
 msg.type = DATA;

 printf ("Give message length (max 8): ");
 scanf ("%d", &data[idx1]);
 if (data[idx1] > 8)
 {
 msg.length = 8;
 }
 else
 {
 msg.length = (UINT8)data[idx1];
 }

 for (idx1 = 0; idx1 < msg.length; idx1++)
 {
 printf ("Give data[%d]: ", idx1);
 scanf ("%d", &data[idx1]);
 msg.data[idx1] = (UINT8)(data[idx1] & 0x00ff);
 }

 printf ("Transmitting the CAN message.\n");
 result = m360_write (handle, &msg);
 printError (result);

 passed++;
 } while (passed < pass);
 }

 /* Receive x CAN messages */
 if (readMsg == 1)
 {

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 36 of 39

 do
 {
 printf ("Waiting...\n");
 do
 {
 /* Wait for an interrupt */
 result = m360_waitforirq();
 m360_ioctrl (handle, GET_IRQF, &parm);
 /* Is it ours? */
 } while ((result == APIS_NOERR) &&
 ((parm.irqFlags & M360_RX_IRQ) != M360_RX_IRQ));

 if (result == APIS_ESIG)
 {
 /*
 * A signal is received, but not caused by APIS
 * (e.g. keyboard interrupt).
 */
 passed = pass;
 }
 else if ((parm.irqFlags & M360_RX_IRQ) == M360_RX_IRQ)
 {
 /* The M360 M-module has received a message. */
 /* Reset the receive interrupt flag */
 parm.irqFlags = M360_RX_IRQ;
 m360_ioctrl (handle, RESET_IRQF, &parm);

 /* Read the message from the M360 CAN bus M-module */
 result = m360_read (handle, &msg);
 if (result == APIS_NOERR)
 {
 /* Do something with the message. */
 printf ("Id: 0x%04x ", msg.id);
 if (msg.type == DATA)
 {
 printf ("Type: data ");
 if (msg.length > 8)
 {
 msg.length = 8;
 }
 printf ("Data: ", msg.data[idx1]);
 for (idx1 = 0; idx1 < msg.length; idx1++)
 {
 printf ("0x%02x ", msg.data[idx1]);
 }
 }
 else
 {
 printf ("Type: request ");
 }
 printf ("\n");
 }
 else
 {
 /* The read function goes wrong */
 /* Do something with the error code. */
 printError (result);
 }
 passed++;
 }
 else

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 37 of 39

 {
 /* The waitforirq function goes wrong */
 /* Do something with the error code. */
 printError (result);
 }
 } while (passed < pass);
 }

 /* Close the path to the M360 CAN bus M-module */
 m360_close (handle);
 printf ("%s is stopped\n", argv[0]);

 return 0;
}

/*
 * Function: usage
 *
 * Description: Displays the usage of this application and closes it.
 *
 * Parameters: char *pName
 * Application name.
 *
 * Return: 0
 * Always zero.
 *
 */
void usage (char *pName)
{
 printf("Syntax: %s [<opts>]\n", pName);
 printf("Options:\n");
 printf("\t-p=<path> module base path in hex (default = 0)\n");
 printf("\t-r=<pass> display incoming CAN messages or\n");
 printf("\t-w=<pass> send a CAN message\n");
 printf("\t-b=<baudrate> set the baudrate: 1 = 10 Kbits/s\n");
 printf("\t 2 = 20 Kbits/s\n");
 printf("\t 3 = 50 Kbits/s\n");
 printf("\t 4 = 125 Kbits/s\n");
 printf("\t 5 = 250 Kbits/s\n");
 printf("\t 6 = 500 Kbits/s\n");
 printf("\t 7 = 800 Kbits/s\n");
 printf("\t 8 = 1 Mbits/s (default)\n");
 printf("\t-? this help\n");
 exit(0);
}

/*
 * Function: printError
 *
 * Description: Displays the meaning of the error code.
 *
 * Parameters: int errorCode
 * An error number.
 *
 * Return: .
 * None.
 *
 */
void printError (int errorCode)
{
 switch (errorCode)

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The NetherlandsPage 38 of 39

 {
 case APIS_ENOTSUP:
 printf ("not supported function\n");
 break;
 case APIS_EPARAM:
 printf ("bad parameter\n");
 break;
 case APIS_EPARMOR:
 printf ("parameter out of range\n");
 break;
 case APIS_EPERMIT:
 printf ("no permission\n");
 break;
 case APIS_EWIDTH:
 printf ("invalid data width\n");
 break;
 case APIS_EGOS:
 printf ("general operating system error\n");
 break;
 case APIS_EINVREQ:
 printf ("invalid request\n");
 break;
 case APIS_ENOMEM:
 printf ("no memory available\n");
 break;
 case APIS_EMODERR:
 printf ("APIS support module not found\n");
 break;
 case APIS_ENOIRQH:
 printf ("no interrupt handler installed\n");
 break;
 case APIS_ENIRQIU:
 printf ("interrupt in use\n");
 break;
 case APIS_EINVPATH:
 printf ("invalid path ID\n");
 break;
 case APIS_ESIG:
 printf ("signal error\n");
 break;
 case APIS_EINVMOD:
 printf ("invalid module\n");
 break;
 case APIS_EINVDRV:
 printf ("invalid driver\n");
 break;
 case APIS_EOPENDEV:
 printf ("error opening device\n");
 break;
 case APIS_ELOCK:
 printf ("device is already in use\n");
 break;
 case APIS_EINCDEV:
 printf ("incorrect device\n");
 break;
 case APIS_EPCIERR:
 printf ("PCI error\n");
 break;
 case APIS_EINVHND:
 printf ("invalid handle\n");
 break;

M360 - CANbus M-module
User Manual Version: 1.0

AcQuisition Technology bv
P.O. Box 627, 5340 AP
Oss, The Netherlands Page 39 of 39

 case APIS_EINVOFF:
 printf ("invalid offset\n");
 break;
 case APIS_EINTRPT:
 printf ("interrupt error\n");
 break;
 case APIS_EFIFOEMP:
 printf ("fifo buffer is empty\n");
 break;
 case APIS_EFIFOFULL:
 printf ("fifo buffer is full\n");
 break;
 case APIS_EFIFOFLOW:
 printf ("fifo buffer has an overflow\n");
 break;
 }
}

/* End of file */

